Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 124203    DOI: 10.1088/0256-307X/29/12/124203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Information Transferring between a Photon's Orbital Angular Momentum and Frequency
LIU Rui-Feng, ZHANG Pei**, GAO Hong, LI Fu-Li
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
LIU Rui-Feng, ZHANG Pei, GAO Hong et al  2012 Chin. Phys. Lett. 29 124203
Download: PDF(440KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A photon's orbital angular momentum (OAM) offers a promising resource for the higher-dimensional quantum information process, which is due to the infinite values of OAM. One of the obstacles for its application is that it is difficult to transmit information encoded in OAM space in long distance quantum communication, e.g., photons with different OAMs are unsupported in optical fiber transmitting. We propose an efficient scheme to transform the information from OAM to frequency. Then the information encoded in frequency freedom can be used in fiber transmission and finally be recovered to OAM from frequency. Our scheme can be easily extended to higher-dimensional quantum information transferring between OAM and frequency.
Received: 23 April 2012      Published: 04 March 2013
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/124203       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/124203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Rui-Feng
ZHANG Pei
GAO Hong
LI Fu-Li
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[2] Lin Q 2010 Chin. Phys. Lett. 27 120302
[3] Li X H, Zhao B K, Sheng Y B, Deng F G and Zhou H Y 2009 Opt. Commun. 282 4025
[4] Zhang T, Yin Z Q, Han Z F and Guo G C 2008 Opt. Commun. 281 4800
[5] Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315
[6] Li X H and Duan X J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 065503
[7] Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O'Brien J L, Gilchrist A and White A G 2009 Nat. Phys. 5 134
[8] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[9] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161
[10] Slussarenko S, Karimi E, Piccirillo B, Marrucci L and Santamato E 2009 Phys. Rev. A 80 022326
[11] Zhang P, Jiang Y, Liu R F, Gao H, Li H R and Li F L 2012 Opt. Commun. 285 838
[12] Zhang P, Liu B H, Liu R F, Li H R, Li F L and Guo G C 2010 Phys. Rev. A 81 052322
[13] Gao M W, Gao C Q, He X Y, Li J Z and Wei G H 2004 Acta Phys. Sin. 53 413(in Chinese)
[14] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'so V, Barnet S and Franke-Arbold S 2004 Opt. Express 12 5448
[15] Gao C Q, Qi X Q, Liu Y D and Weber H 2010 Opt. Express 18 72
[16] Gao C Q, Qi X Q, Liu Y D, Xin J T and Wang L 2011 Opt. Commun. 284 48
[17] Nagali E, Sciarrino F, Martini F D, Marricci L and Piccirillo B 2009 Phys. Rev. Lett. 103 013601
[18] Nagali E, Sciarrino F, Martini F D, Piccirillo B, Marricci L and Santamato E 2009 Opt. Express 17 18745
[19] D'Ambrosio V, Nagali E, Monken C H, Slussarenko S, Marrucci L and Sciarrino F 2012 Opt. Lett. 37 172
[20] Leach J, Padgett M J, Barnett S M, Arnold S F and Courtial J 2002 Phys. Rev. Lett. 88 257901
[21] Huntington E H, Milford G N, Robilliard C and Ralph T C 2005 Opt. Lett. 30 2481
[22] Bruss D 1998 Phys. Rev. Lett. 81 3018
[23] Pasquinucci H B and Gisin N 1999 Phys. Rev. A 59 4238
[24] Merolla J M, Mazurenko Y, Goedgebuer J P and Rhodes W T 1999 Phys. Rev. Lett. 82 1656
[25] Euser T G, Whyte G, Scharrer M, Chen J S Y, Abdolvand A, Nold J, Kaminski C F and Russell P S J 2008 Opt. Express 16 17972
[26] Ma X Q, Liu C H, Chang G Q and Galvanauskas A 2011 Opt. Express 19 26515
[27] L?ffler W, Euser T G, Eliel E R, Scharrer M, Russell P St J and Woerdman J P 2011 Phys. Rev. Lett. 106 240505
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 124203
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 124203
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 124203
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 124203
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 124203
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 124203
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 124203
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 124203
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 124203
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 124203
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 124203
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 124203
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 124203
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 124203
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 124203
Viewed
Full text


Abstract