[1] | Wang W H 2009 Adv. Mater. 21 4524 | Bulk Metallic Glasses with Functional Physical Properties
[2] | Schroers J 2010 Adv. Mater. 22 1566 | Processing of Bulk Metallic Glass
[3] | Wang W H, Dong C, and Shek C H 2004 Mater. Sci. Eng. R 44 45 | Bulk metallic glasses
[4] | Wang W H 2012 Prog. Mater. Sci. 57 487 | The elastic properties, elastic models and elastic perspectives of metallic glasses
[5] | Li D M, Chen L S, Yu P, Ding D, and Xia L 2020 Chin. Phys. Lett. 37 086401 | A New Cu-Based Metallic Glass Composite with Excellent Mechanical Properties*
[6] | Zhang S, Wang W, and Guan P 2021 Chin. Phys. Lett. 38 016802 | Dynamic Crossover in Metallic Glass Nanoparticles*
[7] | Dong J, Feng Y H, Huan Y, Yi J, Wang W H, Bai H Y, and Sun B A 2020 Chin. Phys. Lett. 37 017103 | Rejuvenation in Hot-Drawn Micrometer Metallic Glassy Wires*
[8] | Wang Y J, Du J P, Shinzato S, Dai L H, and Ogata S 2018 Acta Mater. 157 165 | A free energy landscape perspective on the nature of collective diffusion in amorphous solids
[9] | Sun Y, Concustell A, and Greer A L 2016 Nat. Rev. Mater. 1 16039 | Thermomechanical processing of metallic glasses: extending the range of the glassy state
[10] | Shen J, Huang Y J, and Sun J F 2007 J. Mater. Res. 22 3067 | Plasticity of a TiCu-based bulk metallic glass: Effect of cooling rate
[11] | Xiao Y, Wu Y, Liu Z, Wu H, and Lue Z 2010 Sci. Chin. Phys. Mech. & Astron. 53 394 | Effects of cooling rates on the mechanical properties of a Ti-based bulk metallic glass
[12] | Miyazaki N, Lo Y C, Wakeda M, and Ogata S 2016 Appl. Phys. Lett. 109 091906 | Properties of high-density, well-ordered, and high-energy metallic glass phase designed by pressurized quenching
[13] | Wang W H 2019 Prog. Mater. Sci. 106 100561 | Dynamic relaxations and relaxation-property relationships in metallic glasses
[14] | Ediger M D, Gruebele M, Lubchenko V, and Wolynes P G 2021 J. Phys. Chem. B 125 9052 | Glass Dynamics Deep in the Energy Landscape
[15] | Tong X, Zhang Y, Wang Y, Liang X, Zhang K, Zhang F, Cai Y, Ke H, Wang G, Shen J, Makino A, and Wang W 2022 J. Mater. Sci. & Technol. 96 233 | Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing
[16] | He N, Song L, Xu W, Huo J, Wang J Q, and Li R W 2019 J. Non-Cryst. Solids 509 95 | The evolution of relaxation modes during isothermal annealing and its influence on properties of Fe-based metallic glass
[17] | Pan J and Duan F 2021 Acta Metall. Sin. 57 439 | Rejuvenation Behaviors in Metallic Glasses
[18] | Jiang S, Huang Y, and Li M 2019 Chin. Phys. B 28 046103 | Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
[19] | Qiang J and Tsuchiya K 2017 J. Alloys Compd. 712 250 | Composition dependence of mechanically-induced structural rejuvenation in Zr-Cu-Al-Ni metallic glasses
[20] | Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M, and Liu R P 2018 Mater. & Des. 158 248 | Rejuvenation by weakening the medium range order in Zr46Cu46Al8 metallic glass with pressure preloading: A molecular dynamics simulation study
[21] | Guo W, Yamada R, Saida J, Lu S, and Wu S 2018 Nanoscale Res. Lett. 13 398 | Various Rejuvenation Behaviors of Zr-Based Metallic Glass by Cryogenic Cycling Treatment with Different Casting Temperatures
[22] | Saida J, Yamada R, Wakeda M, and Ogata S 2017 Sci. Technol. Adv. Mater. 18 152 | Thermal rejuvenation in metallic glasses
[23] | Miyazaki N, Wakeda M, Wang Y J, and Ogata S 2016 npj Comput. Mater. 2 16013 | Prediction of pressure-promoted thermal rejuvenation in metallic glasses
[24] | Priezjev N V 2019 J. Mater. Res. 34 2664 | Potential energy states and mechanical properties of thermally cycled binary glasses
[25] | Priezjev N V 2019 J. Non-Cryst. Solids 503 131 | The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses
[26] | Ma Y B, Mei L, Cui X, and Zu F Q 2021 Kovove Mater.-Metallic Mater. 59 181 | Improved tensile plasticity of bulk metallic glasses by heightening microstructural heterogeneity and energy state
[27] | Ri M C, Sohrabi S, Ding D W, Dong B S, Zhou S X, and Wang W H 2017 Chin. Phys. B 26 066101 | Serrated magnetic properties in metallic glass by thermal cycle
[28] | Afonin G V, Mitrofanov Y P, Kobelev N P, Pinto M W D S, Wilde G, and Khonik V A 2019 Scr. Mater. 166 6 | Relationship between the enthalpies of structural relaxation, crystallization and melting in metallic glass-forming systems
[29] | Wang J G, Yang H, Pan Y, Song Y J, Li W H, and He Y Z 2016 J. Non-Cryst. Solids 452 273 | Structure transformation and fractography in Zr20Ti20Cu20Ni20Be20 metallic glass
[30] | Guo F Q, Wang H J, Poon S J, and Shiflet G J 2005 Appl. Phys. Lett. 86 091907 | Ductile titanium-based glassy alloy ingots
[31] | Lu J, Ravichandran G, and Johnson W L 2003 Acta Mater. 51 3429 | Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures
[32] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[33] | Sheng H W, Luo W K, Alamgir F M, Bai J M, and Ma E 2006 Nature 439 419 | Atomic packing and short-to-medium-range order in metallic glasses
[34] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[35] | Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298 | Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling
[36] | Pinal R 2008 Entropy 10 207 | Entropy of Mixing and the Glass Transition of Amorphous Mixtures
[37] | Inaba S, Oda S, and Morinaga K 2003 J. Non-Cryst. Solids 325 258 | Heat capacity of oxide glasses at high temperature region
[38] | Ke H B, Wen P, Zhao D Q, and Wang W H 2010 Appl. Phys. Lett. 96 251902 | Correlation between dynamic flow and thermodynamic glass transition in metallic glasses
[39] | Höhne G, McNaughton J, Hemminger W, Flammersheim H J, and Flammersheim H J 2003 Differential Scanning Calorimetry 2nd edn (New York: Springer Science & Business Media) p 147 |