[1] | Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, and Snaith H J 2015 J. Mater. Chem. A 3 19688 | Inorganic caesium lead iodide perovskite solar cells
[2] | Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, and Luther J M 2016 Science 354 92 | Quantum dot–induced phase stabilization of α-CsPbI 3 perovskite for high-efficiency photovoltaics
[3] | Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X et al. 2016 J. Am. Chem. Soc. 138 15829 | All-Inorganic Perovskite Solar Cells
[4] | Wang Y, Zhang T, Kan M, and Zhao Y 2018 J. Am. Chem. Soc. 140 12345 | Bifunctional Stabilization of All-Inorganic α-CsPbI 3 Perovskite for 17% Efficiency Photovoltaics
[5] | Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, and Kovalenko M V 2015 Nano Lett. 15 5635 | Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, I)
[6] | Song J, Li J, Li X, Xu L, Dong Y, and Zeng H 2015 Adv. Mater. 27 7162 | Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX 3 )
[7] | Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H, and Rogach A L 2016 Nano Lett. 16 1415 | Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer
[8] | Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, and Kovalenko M V 2015 Nano Lett. 15 3692 | Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
[9] | Yoon S M, Min H, Kim J B, Kim G, Lee K S, and Seok S I 2021 Joule 5 183 | Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells
[10] | Wang Y, Chen Y, Zhang T, Wang X, and Zhao Y 2020 Adv. Mater. 32 2001025 | Chemically Stable Black Phase CsPbI 3 Inorganic Perovskites for High‐Efficiency Photovoltaics
[11] | Xiang W, Liu S F, and Tress W 2021 Energy & Environ. Sci. 14 2090 | A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells
[12] | Trots D M and Myagkota S V 2008 J. Phys. Chem. Solids 69 2520 | High-temperature structural evolution of caesium and rubidium triiodoplumbates
[13] | Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, and You J 2018 Nat. Commun. 9 2225 | Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells
[14] | Wang Y, Dar M I, Ono L K, Zhang T, Kan M, Li Y, Zhang L, Wang X, Yang Y, Gao X et al. 2019 Science 365 591 | Thermodynamically stabilized β-CsPbI 3 –based perovskite solar cells with efficiencies >18%
[15] | Zhao B, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y et al. 2018 J. Am. Chem. Soc. 140 11716 | Thermodynamically Stable Orthorhombic γ-CsPbI 3 Thin Films for High-Performance Photovoltaics
[16] | Wang K, Jin Z, Liang L, Bian H, Wang H, Feng J, Wang Q, and Liu S F 2019 Nano Energy 58 175 | Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%
[17] | Ye Q, Ma F, Zhao Y, Yu S, Chu Z, Gao P, Zhang X, and You J 2020 Small 16 2005246 | Stabilizing γ‐CsPbI 3 Perovskite via Phenylethylammonium for Efficient Solar Cells with Open‐Circuit Voltage over 1.3 V
[18] | Agiorgousis M L, Sun Y Y, Zeng H, and Zhang S 2014 J. Am. Chem. Soc. 136 14570 | Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH 3 NH 3 PbI 3
[19] | Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, and Berry J J 2016 ACS Energy Lett. 1 360 | Defect Tolerance in Methylammonium Lead Triiodide Perovskite
[20] | Yin W J, Shi T, and Yan Y 2014 Appl. Phys. Lett. 104 063903 | Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
[21] | Brandt R E, Stevanović V, Ginley D S, and Buonassisi T 2015 MRS Commun. 5 265 | Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites
[22] | Walsh A and Zunger A 2017 Nat. Mater. 16 964 | Instilling defect tolerance in new compounds
[23] | Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Perini C A R, Deschler F, Petrozza A, and De Angelis F 2018 Energy & Environ. Sci. 11 702 | Iodine chemistry determines the defect tolerance of lead-halide perovskites
[24] | Park J S, Kim S, Xie Z, and Walsh A 2018 Nat. Rev. Mater. 3 194 | Point defect engineering in thin-film solar cells
[25] | Kang J and Wang L W 2017 J. Phys. Chem. Lett. 8 489 | High Defect Tolerance in Lead Halide Perovskite CsPbBr 3
[26] | Rakita Y, Lubomirsky I, and Cahen D 2019 Mater. Horiz. 6 1297 | When defects become ‘dynamic’: halide perovskites: a new window on materials?
[27] | Cohen A V, Egger D A, Rappe A M, and Kronik L 2019 J. Phys. Chem. Lett. 10 4490 | Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr 3
[28] | Gehrmann C and Egger D A 2019 Nat. Commun. 10 3141 | Dynamic shortening of disorder potentials in anharmonic halide perovskites
[29] | Yang R X, Skelton J M, da Silva E L, Frost J M, and Walsh A 2020 J. Chem. Phys. 152 024703 | Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites
[30] | Huang Y, Yin W J, and He Y 2018 J. Phys. Chem. C 122 1345 | Intrinsic Point Defects in Inorganic Cesium Lead Iodide Perovskite CsPbI 3
[31] | Zhang X, Turiansky M E, and Van de Walle C G 2021 Cell Rep. Phys. Sci. 2 100604 | All-inorganic halide perovskites as candidates for efficient solar cells
[32] | Zhang J, Zhong Y, and Li G 2021 J. Phys. Chem. C 125 27016 | Benign Deep-Level Defects in Cesium Lead Iodine Perovskite
[33] | Ming C, Wang H, West D, Zhang S, and Sun Y Y 2022 J. Mater. Chem. A 10 3018 | Defect tolerance in CsPbI 3 : reconstruction of the potential energy landscape and band degeneracy in spin–orbit coupling
[34] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[35] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[36] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[37] | Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, and Burke K 2008 Phys. Rev. Lett. 100 136406 | Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
[38] | Nosé S 1984 Mol. Phys. 52 255 | A molecular dynamics method for simulations in the canonical ensemble
[39] | Hoover W G 1985 Phys. Rev. A 31 1695 | Canonical dynamics: Equilibrium phase-space distributions
[40] | Brivio F, Walker A B, and Walsh A 2013 APL Mater. 1 042111 | Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles
[41] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 | First principles phonon calculations in materials science
[42] | Hellman O, Steneteg P, Abrikosov I A, and Simak S I 2013 Phys. Rev. B 87 104111 | Temperature dependent effective potential method for accurate free energy calculations of solids
[43] | Glazer A M 1972 Acta Crystallogr. Sect. B 28 3384 | The classification of tilted octahedra in perovskites
[44] | Ming C, Yang K, Zeng H, Zhang S, and Sun Y Y 2020 Mater. Horiz. 7 2985 | Octahedron rotation evolution in 2D perovskites and its impact on optoelectronic properties: the case of Ba–Zr–S chalcogenides
[45] | Li Y, Zhang C, Zhang X, Huang D, Shen Q, Cheng Y, and Huang W 2017 Appl. Phys. Lett. 111 162106 | Intrinsic point defects in inorganic perovskite CsPbI 3 from first-principles prediction
[46] | Zhang X P, Li Y N, Sun Y Y, and Zhang T 2019 Angew. Chem. Int. Ed. 58 18394 | Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium–Oxygen Batteries
[47] | Wu X, Gao W, Chai J, Ming C, Chen M, Zeng H, Zhang P, Zhang S, and Sun Y Y 2021 Sci. Chin. Mater. 64 2976 | Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3
[48] | Zhang X, Turiansky M E, and Van de Walle C G 2020 J. Phys. Chem. C 124 6022 | Correctly Assessing Defect Tolerance in Halide Perovskites
[49] | Du M H 2015 J. Phys. Chem. Lett. 6 1461 | Density Functional Calculations of Native Defects in CH 3 NH 3 PbI 3 : Effects of Spin–Orbit Coupling and Self-Interaction Error
[50] | Sun Y Y, Shi J, Lian J, Gao W, Agiorgousis M L, Zhang P, and Zhang S 2016 Nanoscale 8 6284 | Discovering lead-free perovskite solar materials with a split-anion approach
[51] | Chen H Y, Yue Z, Ren D, Zeng H, Wei T, Zhao K, Yang R, Qiu P, Chen L, and Shi X 2019 Adv. Mater. 31 1806518 | Thermal Conductivity during Phase Transitions
[52] | Chen L, Liu J, Jiang C, Zhao K, Chen H, Shi X, Chen L, Sun C, Zhang S, Wang Y et al. 2019 Adv. Mater. 31 1804919 | Nanoscale Behavior and Manipulation of the Phase Transition in Single-Crystal Cu 2 Se
[53] | Zhang X, Bu Z, Lin S, Chen Z, Li W, and Pei Y 2020 Joule 4 986 | GeTe Thermoelectrics
[54] | Zhao K, Qiu P, Shi X, and Chen L 2020 Adv. Funct. Mater. 30 1903867 | Recent Advances in Liquid‐Like Thermoelectric Materials