[1] | Key B, Morcrette M, Tarascon J M et al 2011 J. Am. Chem. Soc. 133 503 | Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
[2] | Hui W and Yi C 2012 Nano Today 7 414 | Designing nanostructured Si anodes for high energy lithium ion batteries
[3] | Zhang W 2011 J. Power Sources 196 13 | A review of the electrochemical performance of alloy anodes for lithium-ion batteries
[4] | Liu X H, Zhong L, Huang S et al 2012 ACS Nano 6 1522 | Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
[5] | Lei X, Wang C, Yi Z et al 2007 J. Alloys Compd. 429 311 | Effects of particle size on the electrochemical properties of aluminum powders as anode materials for lithium ion batteries
[6] | Honda H, Sakaguchi H, Fukuda Y et al 2003 Mater. Res. Bull. 38 647 | Anode behaviors of aluminum antimony synthesized by mechanical alloying for lithium secondary battery
[7] | Rouxel D and Pigeat P 2006 Prog. Surf. Sci. 81 488 | Surface oxidation and thin film preparation of AlCuFe quasicrystals
[8] | Jiang X Y, Liu Q S and Zhang L 2011 Rare Met. 30 (Suppl. 1) 63 | Electrochemical hydrogen storage property of NiTi alloys with different Ti content prepared by mechanical alloying
[9] | Luo X L, Grant D M and Walker G S 2015 J. Alloys Compd. 645 S23 | Hydrogen storage properties for Mg–Zn–Y quasicrystal and ternary alloys
[10] | Lan X, Wang H, Sun Z et al 2019 J. Alloys Compd. 805 942 | Al–Cu–Fe quasicrystals as the anode for lithium ion batteries
[11] | Patiño-Carachure C, Flores-Chan J E, Gil A F et al 2017 J. Alloys Compd. 694 46 | Synthesis of onion-like carbon-reinforced AlCuFe quasicrystals by high-energy ball milling
[12] | Chan C K, Peng H, Liu G et al 2008 Nat. Nanotechnol. 3 31 | High-performance lithium battery anodes using silicon nanowires
[13] | Fuchsbichler B, Stangl C, Kren H et al 2011 J. Power Sources 196 2889 | High capacity graphite–silicon composite anode material for lithium-ion batteries