[1] | Böhmer R, Gainaru C and Richert R 2014 Phys. Rep. 545 125 | Structure and dynamics of monohydroxy alcohols—Milestones towards their microscopic understanding, 100 years after Debye
[2] | Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler E A and Böhmer R 2010 Phys. Rev. Lett. 105 258303 | Nuclear-Magnetic-Resonance Measurements Reveal the Origin of the Debye Process in Monohydroxy Alcohols
[3] | Bauer T, Michl M, Lunkenheimer P and Loidl A 2015 J. Non-Cryst. Solids 407 66 | Nonlinear dielectric response of Debye, α , and β relaxation in 1-propanol
[4] | Gao Y, Chen Z, Tu W, Li X, Tian Y, Liu R and Wang L 2015 J. Chem. Phys. 142 214505 | Anomaly in dielectric relaxation dispersion of glass-forming alkoxy alcohols
[5] | Gainaru C, Kastner S, Mayr F, Lunkenheimer P, Schildmann S, Weber H J, Hiller W, Loidl A and Böhmer R 2011 Phys. Rev. Lett. 107 118304 | Hydrogen-Bond Equilibria and Lifetimes in a Monohydroxy Alcohol
[6] | Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A and Böhmer R 2013 J. Chem. Phys. 138 94505 | Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols
[7] | Bauer S, Moch K, Münzner P, Schildmann S, Gainaru C and Böhmer R 2015 J. Non-Cryst. Solids 407 384 | Mixed Debye-type liquids studied by dielectric, shear mechanical, nuclear magnetic resonance, and near-infrared spectroscopy
[8] | Li X, Chen Z M, Li Z J, Gao Y Q, Tu W K, Li X Q, Zhang Y Q, Liu Y D and Wang L M 2014 J. Chem. Phys. 141 104506 | Comparative study of dynamics in glass forming mixtures of Debye-type N-ethylacetamide with water, alcohol, and amine
[9] | Huth H, Wang L M, Schick C and Richert R 2007 J. Chem. Phys. 126 104503 | Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol
[10] | Debye P 1929 Polar Molecules (New York: Chemical Catalog Company) Chap II p 27 |
[11] | Onsager L 1936 J. Am. Chem. Soc. 58 1486 | Electric Moments of Molecules in Liquids
[12] | Oster G and Kirkwood J G 1943 J. Chem. Phys. 11 175 | The Influence of Hindered Molecular Rotation on the Dielectric Constants of Water, Alcohols, and Other Polar Liquids
[13] | Kirkwood J G 1939 J. Chem. Phys. 7 911 | The Dielectric Polarization of Polar Liquids
[14] | Stockmaye W H and Baur M E 1964 J. Am. Chem. Soc. 86 3485 | Low-Frequency Electrical Response of Flexible Chain Molecules
[15] | Adachi K and Kotaka T 1993 Prog. Polym. Sci. 18 585 | Dielectric normal mode relaxation
[16] | Sillren P 2013 Trees, Queues and Alcohols Ph. D. dissertation (Göteborg: Chalmers University of Technology) |
[17] | Yomogida Y, Sato Y, Nozaki R, Mishina T and Nakahara J 2010 J. Mol. Liq. 154 31 | Dielectric study of normal alcohols with THz time-domain spectroscopy
[18] | Vrhovšek A, Gereben O, Pothoczki S, Tomšič M, Jamnik A, Kohara S and Pusztai L 2010 J. Phys.: Condens. Matter 22 404214 | An approach towards understanding the structure of complex molecular systems: the case of lower aliphatic alcohols
[19] | Sahoo A, Sarkar S, Krishna P S R, Bhagat V and Joarder R N 2008 Pramana 71 133 | Molecular conformation and structural correlations of liquid D-1-propanol through neutron diffraction
[20] | Tamenori Y, Okada K, Takahashi O, Arakawa S, Tabayashi K, Hiraya A, Gejo T and Honma K 2008 J. Chem. Phys. 128 124321 | Hydrogen bonding in methanol clusters probed by inner-shell photoabsorption spectroscopy in the carbon and oxygen K-edge regions
[21] | Tomšič M, Jamnik A, Fritz-Popovski G, Glatter O and Vlček L 2007 J. Phys. Chem. B 111 1738 | Structural Properties of Pure Simple Alcohols from Ethanol, Propanol, Butanol, Pentanol, to Hexanol: Comparing Monte Carlo Simulations with Experimental SAXS Data
[22] | Kashtanov S, Augustson A, Rubensson J E, Nordgren J, Ågren H, Guo J H and Luo Y 2005 Phys. Rev. B 71 104205 | Chemical and electronic structures of liquid methanol from x-ray emission spectroscopy and density functional theory
[23] | Guo J H, Luo Y, Augustsson A, Kashtanov S, Rubensson J E, Shuh D K, Ågren H and Nordgren J 2003 Phys. Rev. Lett. 91 157401 | Molecular Structure of Alcohol-Water Mixtures
[24] | Maccallum J L and Tieleman D P 2002 J. Am. Chem. Soc. 124 15085 | Structures of Neat and Hydrated 1-Octanol from Computer Simulations
[25] | Pálinkás G, Hawlicka E and Heinzinger K 1987 J. Phys. Chem. 91 4334 | A molecular dynamics study of liquid methanol with a flexible three-site model
[26] | Wang L N, Zhao X Y and Huang Y N 2019 Int. J. Mod. Phys. B (submitted) |
[27] | Cao M S, Song W L, Hou Z L, Wen B and Yuan J 2010 Carbon 48 788 | The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites
[28] | Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B and Yuan J 2018 Small 14 1800987 | Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion
[29] | Glauber R J 1963 J. Math. Phys. 4 294 | Time‐Dependent Statistics of the Ising Model
[30] | Huang Y N, Wang C J and Riande E 2005 J. Chem. Phys. 122 144502 | Superdipole liquid scenario for the dielectric primary relaxation in supercooled polar liquids
[31] | Zhang J L, Wang L N, Zhao X Y, Zhang L L, Zhou H W, Wei L and Huang Y N 2011 Chin. Phys. B 20 26401 | Solving the initial condition of the string relaxation equation of the string model for glass transition: part-II
[32] | Zhang J L, Wang L N, Zhou H W, Zhan L L, Zhao X Y and Huang Y N 2010 Chin. Phys. B 19 56403 | Solving the initial condition of the string relaxation equation of the string model for glass transition: part-I
[33] | Zhao X Y, Wang L N, Fan X H, Zhang L L, Wei L, Zhang J L and Huang Y N 2011 Acta Phys. Sin. 60 036403 (in Chinese) | Computer simulation of the string relaxation modes of the molecule-string model for glass transition