Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 090302    DOI: 10.1088/0256-307X/41/9/090302
GENERAL |
Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates
Yang Wang1,2†, Jinlong Cui1,2†, Hongkai Zhang1,2, Yuan Zhao1,3, Siliu Xu1,3*, and Qin Zhou4*
1Key Laboratory of Optoelectronic Sensing and Intelligent Control, Hubei University of Science and Technology, Xianning 437100, China
2School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
3School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
4Research Center of Nonlinear Science, School of Mathematics and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
Cite this article:   
Yang Wang, Jinlong Cui, Hongkai Zhang et al  2024 Chin. Phys. Lett. 41 090302
Download: PDF(5436KB)   PDF(mobile)(5464KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a novel approach for generating stable three-dimensional (3D) spatiotemporal solitons (SSs) within a rotating Bose–Einstein condensate, incorporating spin–orbit coupling (SOC), a weakly anharmonic potential and cold Rydberg atoms. This intricate system facilitates the emergence of quasi-stable 3D SSs with topological charges $\left\vert m \right \vert \le 3$ in two spinor components, potentially exhibiting diverse spatial configurations. Our findings reveal that the Rydberg long-range interaction, spin–orbit coupling, and rotational angular frequency exert significant influence on the domains of existence and stability of these solitons. Notably, the Rydberg interaction contributes to a reduction in the norm of topological solitons, while the SOC plays a key role in stabilizing the SSs with finite topological charges. This research of SSs exhibits potential applications in precision measurement, quantum information processing, and other advanced technologies.
Received: 26 June 2024      Published: 02 September 2024
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/090302       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Wang
Jinlong Cui
Hongkai Zhang
Yuan Zhao
Siliu Xu
and Qin Zhou
[1] Kevrekidis P G, Frantzeskakis D J, and Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment (Berlin: Springer)
[2] Fetter A L 2009 Rev. Mod. Phys. 81 647
[3] Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P, and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401
[4] Li B B, Zhao Y, Xu S L, Zhou Q, Fu Q D, Ye F W, Hua C B, Chen M W, Hu H J, Zhou Q Q, and Qiu Z C 2023 Chin. Phys. Lett. 40 044201
[5] Ding C, Zhou Q, Xu S, Triki H, Mirzazadeh M, and Liu W 2023 Chin. Phys. Lett. 40 040501
[6] Silberberg Y 1990 Opt. Lett. 15 1282
[7] Bergé L 1998 Phys. Rep. 303 259
[8] Desyatnikov A, Maimistov A, and Malomed B 2000 Phys. Rev. E 61 3107
[9] Mihalache D, Mazilu D, Crasovan L C, Towers I, Buryak A V, Malomed B A, Torner L, Torres J P, and Lederer F 2002 Phys. Rev. Lett. 88 073902
[10] Li H, Xu S L, Belić M R, and Cheng J X 2018 Phys. Rev. A 98 033827
[11] Tikhonenkov I, Malomed B A, and Vardi A 2008 Phys. Rev. Lett. 100 090406
[12] Kartashov Y V, Malomed B A, and Torner L 2011 Rev. Mod. Phys. 83 247
[13] Falcão-Filho E L, de Araújo C B, Boudebs G, Leblond H, and Skarka V 2013 Phys. Rev. Lett. 110 013901
[14] Torner L, Carrasco S, Torres J P, Crasovan L C, and Mihalache D 2001 Opt. Commun. 199 277
[15] Torner L and Kartashov Y V 2009 Opt. Lett. 34 1129
[16] Baizakov B B, Malomed B A, and Salerno M 2004 Phys. Rev. A 70 053613
[17] Mihalache D, Mazilu D, Lederer F, Kartashov Y V, Crasovan L C, and Torner L 2004 Phys. Rev. E 70 055603
[18] Mihalache D, Mazilu D, Lederer F, Malomed B A, Kartashov Y V, Crasovan L C, and Torner L 2005 Phys. Rev. Lett. 95 023902
[19] Chen S F, Guo Q, Xu S L, Belić M R, Zhao Y, Zhao D, and He J R 2019 Appl. Math. Lett. 92 15
[20] Liao B, Li S, Huang C, Luo Z, Pang W, Tan H, Malomed B A, and Li Y 2017 Phys. Rev. A 96 043613
[21] Li Y, Liu Y, Fan Z, Pang W, Fu S, and Malomed B A 2017 Phys. Rev. A 95 063613
[22] Xiong L, Gong M, Fang Z X, and Sun R 2023 Chin. Phys. Lett. 40 127402
[23] Liao Q Y, Hu H J, Chen M W, Shi Y, Zhao Y, Hua C B, Xu S L, Fu Q D, Ye F W, and Zhou Q 2023 Acta Phys. Sin. 72 104202 (in Chinese)
[24] Xu Y J 2023 Chaos, Solitons & Fractals 177 114308
[25] Chen Y X 2023 Chaos, Solitons & Fractals 169 113251
[26] Qiu W X, Geng K L, Zhu B W, Liu W, Li J T, and Dai C Q 2024 Nonlinear Dyn. 112 10215
[27] Desyatnikov A S, Sukhorukov A A, and Kivshar Y S 2005 Phys. Rev. Lett. 95 203904
[28] Lashkin V M 2008 Phys. Rev. A 77 025602
[29] Jiang X, Fan Z, Chen Z, Pang W, Li Y, and Malomed B A 2016 Phys. Rev. A 93 023633
[30] Zezyulin D A, Kartashov Y V, Skryabin D V, and Shelykh I A 2018 ACS Photonics 5 3634
[31] Xu S L, Lei Y B, Du J T, Zhao Y, Hua R, and Zeng J H 2022 Chaos, Solitons & Fractals 164 112665
[32] Sakaguchi H, Li B, and Malomed B A 2014 Phys. Rev. E 89 032920
[33] Kartashov Y V, Konotop V V, and Zezyulin D A 2014 Phys. Rev. A 90 063621
[34] Zhang Y C, Zhou Z W, Malomed B A, and Pu H 2015 Phys. Rev. Lett. 115 253902
[35] Friedler I, Petrosyan D, Fleischhauer M, and Kurizki G 2005 Phys. Rev. A 72 043803
[36] Mohapatra A K, Jackson T R, and Adams C S 2007 Phys. Rev. Lett. 98 113003
[37] Firstenberg O, Adams C S, and Hofferberth S 2016 J. Phys. B 49 152003
[38] Maucher F, Henkel N, Saffman M, Królikowski W, Skupin S, and Pohl T 2011 Phys. Rev. Lett. 106 170401
[39] Bai Z, Li W, and Huang G 2019 Optica 6 309
[40] Guo Y W, Xu S L, He J R, Deng P, Belić M R, and Zhao Y 2020 Phys. Rev. A 101 023806
[41] Dong L and Kartashov Y V 2021 Phys. Rev. Lett. 126 244101
[42] Yang J K and Lakoba T I 2008 Stud. Appl. Math. 120 265
[43] Hang C, Li W, and Huang G 2019 Phys. Rev. A 100 043807
[44] Xu S L, Wu T, Hu H J, He J R, Zhao Y, and Fan Z 2024 Chaos, Solitons & Fractals 184 115043
Related articles from Frontiers Journals
[1] Dengfeng Wang, Yingda Chen, Zhi-Chuan Niu, Wen-Kai Lou, and Kai Chang. Exciton Bose–Einstein Condensation in Transition Metal Dichalcogenide Monolayer under In-Plane Magnetic Fields[J]. Chin. Phys. Lett., 2024, 41(8): 090302
[2] Gui-hua Chen, Hong-cheng Wang, Hai-ming Deng, and Boris A. Malomed. Vortex Quantum Droplets under Competing Nonlinearities[J]. Chin. Phys. Lett., 2024, 41(2): 090302
[3] Jin-Yu Liu, Xiao-Qiong Wang, and Zhi-Fang Xu. Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice[J]. Chin. Phys. Lett., 2023, 40(8): 090302
[4] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 090302
[5] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 090302
[6] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[7] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 090302
[8] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 090302
[9] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 090302
[10] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 090302
[11] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 090302
[12] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 090302
[13] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 090302
[14] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 090302
[15] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 090302
Viewed
Full text


Abstract