CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of Rare-Earth Element Substitution in Superconducting R$_3$Ni$_2$O$_7$ under Pressure |
Zhiming Pan1,2†, Chen Lu2†, Fan Yang3*, and Congjun Wu2,1,4,5* |
1Institute for Theoretical Sciences, Westlake University, Hangzhou 310024, China 2New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, Hangzhou 310024, China 3School of Physics, Beijing Institute of Technology, Beijing 100081, China 4Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China 5Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
|
|
Cite this article: |
Zhiming Pan, Chen Lu, Fan Yang et al 2024 Chin. Phys. Lett. 41 087401 |
|
|
Abstract Recently, high temperature ($T_{\rm c}\approx 80$ K) superconductivity (SC) has been discovered in La$_3$Ni$_2$O$_7$ (LNO) under pressure. This raises the question of whether the superconducting transition temperature $T_{\rm c}$ could be further enhanced under suitable conditions. One possible route for achieving higher $T_{\rm c}$ is element substitution. Similar SC could appear in the $Fmmm$ phase of rare-earth (RE) R$_3$Ni$_2$O$_7$ (RNO, R = RE element) material series under suitable pressure. The electronic properties in the RNO materials are dominated by the Ni $3d$ orbitals in the bilayer NiO$_2$ plane. In the strong coupling limit, the SC could be fully characterized by a bilayer single $3d_{x^2-y^2}$-orbital $t$–$J_{\parallel}$–$J_{\perp}$ model. With RE element substitution from La to other RE element, the lattice constant of the $Fmmm$ RNO material decreases, and the resultant electronic hopping integral increases, leading to stronger superexchanges between the $3d_{x^2-y^2}$ orbitals. Based on the slave-boson mean-field theory, we explore the pairing nature and the evolution of $T_{\rm c}$ in RNO materials under pressure. Consequently, it is found that the element substitution does not alter the pairing nature, i.e., the inter-layer s-wave pairing is always favored in the superconducting RNO under pressure. However, the $T_{\rm c}$ increases from La to Sm, and a nearly doubled $T_{\rm c}$ could be realized in SmNO under pressure. This work provides evidence for possible higher $T_{\rm c}$ R$_3$Ni$_2$O$_7$ materials, which may be realized in further experiments.
|
|
Received: 08 April 2024
Published: 16 August 2024
|
|
PACS: |
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.72.-h
|
(Cuprate superconductors)
|
|
|
|
|
[1] | Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493 |
[2] | Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con] |
[3] | Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302 |
[4] | Zhang Y N, Su D J, Huang Y N, Sun H L, Huo M W, Shan Z Y, Ye K X, Yang Z H, Li R, Smidman M, Wang M, Jiao L, and Yuan H Q 2023 arXiv:2307.14819 [cond-mat.supr-con] |
[5] | Yang J G, Sun H L, Hu X W et al. 2024 Nat. Commun. 15 4373 |
[6] | Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, and Qi Y 2024 J. Mater. Sci. & Technol. 185 147 |
[7] | Wang G, Wang N N, Shen X L et al. 2024 Phys. Rev. X 14 011040 |
[8] | Luo Z, Hu X, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001 |
[9] | Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510 |
[10] | Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505 |
[11] | Lechermann F, Gondolf J, Bötzel S, and Eremin I M 2023 Phys. Rev. B 108 L201121 |
[12] | Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2024 Phys. Rev. Lett. 132 106002 |
[13] | Gu Y H, Le C C, Yang Z S, Wu X X, and Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con] |
[14] | Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401 |
[15] | Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501 |
[16] | Shilenko D A and Leonov I V 2023 Phys. Rev. B 108 125105 |
[17] | Wú W, Luo Z, Yao D X, and Wang M 2024 Sci. Chin. Phys. Mech. & Astron. 67 117402 |
[18] | Cao Y and Yang Y F 2024 Phys. Rev. B 109 L081105 |
[19] | Chen X J, Jiang P H, Li J, Zhong Z C, and Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con] |
[20] | Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002 |
[21] | Lu C, Pan Z, Yang F, and Wu C 2024 Phys. Rev. Lett. 132 146002 |
[22] | Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2024 Nat. Commun. 15 2470 |
[23] | Oh H and Zhang Y H 2023 Phys. Rev. B 108 174511 |
[24] | Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, and Si Q M 2023 arXiv:2307.16697 [cond-mat.supr-con] |
[25] | Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, and Su G 2024 Phys. Rev. Lett. 132 036502 |
[26] | Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108 |
[27] | Jiang K, Wang Z, and Zhang F C 2024 Chin. Phys. Lett. 41 017402 |
[28] | Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2023 Phys. Rev. B 108 165141 |
[29] | Huang J, Wang Z D, and Zhou T 2023 Phys. Rev. B 108 174501 |
[30] | Qin Q and Yang Y F 2023 Phys. Rev. B 108 L140504 |
[31] | Tian Y H, Chen Y, Wang J M, He R Q, and Lu Z Y 2024 Phys. Rev. B 109 165154 |
[32] | Lu D C, Li M, Zeng Z Y, Hou W D, Wang J, Yang F, and You Y Z 2023 arXiv:2308.11195 [cond-mat.str-el] |
[33] | Jiang R, Hou J, Fan Z, Lang Z J, and Ku W 2024 Phys. Rev. Lett. 132 126503 |
[34] | Kitamine N, Ochi M, and Kuroki K 2023 arXiv:2308.12750 [cond-mat.supr-con] |
[35] | Luo Z H, Lv B, Wang M, Wú W, and Yao D X 2023 arXiv:2308.16564 [cond-mat.str-el] |
[36] | Zhang J X, Zhang H K, You Y Z, and Weng Z Y 2023 arXiv:2309.05726 [cond-mat.str-el] |
[37] | Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, and Kuroki K 2024 Phys. Rev. B 109 144511 |
[38] | Lange H, Homeier L, Demler E, Schollwöck U, Bohrdt A, and Grusdt F 2023 arXiv:2309.13040 [cond-mat.str-el] |
[39] | Geisler B, Hamlin J J, Stewart G R, Hennig R G, and Hirschfeld P J 2024 npj Quantum Mater. 9 38 |
[40] | Yang H, Oh H, and Zhang Y H 2023 arXiv:2309.15095 [cond-mat.str-el] |
[41] | Rhodes L C and Wahl P 2024 Phys. Rev. Mater. 8 044801 |
[42] | Lange H, Homeier L, Demler E, Schollwöck U, Grusdt F, and Bohrdt A 2023 arXiv:2309.15843 [cond-mat.str-el] |
[43] | LaBollita H, Pardo V, Norman M R, and Botana A S 2023 arXiv:2309.17279 [cond-mat.str-el] |
[44] | Kumar U, Melnick C, and Kotliar G 2023 arXiv:2310.00983 [cond-mat.str-el] |
[45] | Lu C, Pan Z M, Yang F, and Wu C J 2023 arXiv: 2310.02915 [cond-mat.str-el] |
[46] | Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 |
[47] | Proust C and Taillefer L 2019 Annu. Rev. Condens. Matter Phys. 10 409 |
[48] | Ubbens M U and Lee P A 1994 Phys. Rev. B 50 438 |
[49] | Kuboki K and Lee P A 1995 J. Phys. Soc. Jpn. 64 3179 |
[50] | Maly J, Liu D Z, and Levin K 1996 Phys. Rev. B 53 6786 |
[51] | Nazarenko A and Dagotto E 1996 Phys. Rev. B 54 13158 |
[52] | Medhi A, Basu S, and Kadolkar C 2009 Eur. Phys. J. B 72 583 |
[53] | Bohrdt A, Homeier L, Reinmoser C, Demler E, and Grusdt F 2021 Ann. Phys. 435 168651 |
[54] | Bohrdt A, Homeier L, Bloch I, Demler E, and Grusdt F 2022 Nat. Phys. 18 651 |
[55] | Hirthe S, Chalopin T, Bourgund D, Bojović P, Bohrdt A, Demler E, Grusdt F, Bloch I, and Hilker T A 2023 Nature 613 463 |
[56] | Eder R, Ohta Y, and Maekawa S 1995 Phys. Rev. B 52 7708 |
[57] | Vojta M and Becker K W 1999 Phys. Rev. B 60 15201 |
[58] | Zhao H and Engelbrecht J R 2005 Phys. Rev. B 71 054508 |
[59] | Zegrodnik M and Spałek J 2017 Phys. Rev. B 95 024507 |
[60] | Kotliar G and Liu J 1988 Phys. Rev. B 38 5142 |
[61] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[62] | Pardo V and Pickett W E 2011 Phys. Rev. B 83 245128 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|