Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 087401    DOI: 10.1088/0256-307X/41/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Rare-Earth Element Substitution in Superconducting R$_3$Ni$_2$O$_7$ under Pressure
Zhiming Pan1,2†, Chen Lu2†, Fan Yang3*, and Congjun Wu2,1,4,5*
1Institute for Theoretical Sciences, Westlake University, Hangzhou 310024, China
2New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, Hangzhou 310024, China
3School of Physics, Beijing Institute of Technology, Beijing 100081, China
4Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
5Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
Cite this article:   
Zhiming Pan, Chen Lu, Fan Yang et al  2024 Chin. Phys. Lett. 41 087401
Download: PDF(773KB)   PDF(mobile)(812KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, high temperature ($T_{\rm c}\approx 80$ K) superconductivity (SC) has been discovered in La$_3$Ni$_2$O$_7$ (LNO) under pressure. This raises the question of whether the superconducting transition temperature $T_{\rm c}$ could be further enhanced under suitable conditions. One possible route for achieving higher $T_{\rm c}$ is element substitution. Similar SC could appear in the $Fmmm$ phase of rare-earth (RE) R$_3$Ni$_2$O$_7$ (RNO, R = RE element) material series under suitable pressure. The electronic properties in the RNO materials are dominated by the Ni $3d$ orbitals in the bilayer NiO$_2$ plane. In the strong coupling limit, the SC could be fully characterized by a bilayer single $3d_{x^2-y^2}$-orbital $t$–$J_{\parallel}$–$J_{\perp}$ model. With RE element substitution from La to other RE element, the lattice constant of the $Fmmm$ RNO material decreases, and the resultant electronic hopping integral increases, leading to stronger superexchanges between the $3d_{x^2-y^2}$ orbitals. Based on the slave-boson mean-field theory, we explore the pairing nature and the evolution of $T_{\rm c}$ in RNO materials under pressure. Consequently, it is found that the element substitution does not alter the pairing nature, i.e., the inter-layer s-wave pairing is always favored in the superconducting RNO under pressure. However, the $T_{\rm c}$ increases from La to Sm, and a nearly doubled $T_{\rm c}$ could be realized in SmNO under pressure. This work provides evidence for possible higher $T_{\rm c}$ R$_3$Ni$_2$O$_7$ materials, which may be realized in further experiments.
Received: 08 April 2024      Published: 16 August 2024
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.72.-h (Cuprate superconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/087401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiming Pan
Chen Lu
Fan Yang
and Congjun Wu
[1] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493
[2] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con]
[3] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302
[4] Zhang Y N, Su D J, Huang Y N, Sun H L, Huo M W, Shan Z Y, Ye K X, Yang Z H, Li R, Smidman M, Wang M, Jiao L, and Yuan H Q 2023 arXiv:2307.14819 [cond-mat.supr-con]
[5] Yang J G, Sun H L, Hu X W et al. 2024 Nat. Commun. 15 4373
[6] Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, and Qi Y 2024 J. Mater. Sci. & Technol. 185 147
[7] Wang G, Wang N N, Shen X L et al. 2024 Phys. Rev. X 14 011040
[8] Luo Z, Hu X, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001
[9] Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510
[10] Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505
[11] Lechermann F, Gondolf J, Bötzel S, and Eremin I M 2023 Phys. Rev. B 108 L201121
[12] Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2024 Phys. Rev. Lett. 132 106002
[13] Gu Y H, Le C C, Yang Z S, Wu X X, and Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con]
[14] Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[15] Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501
[16] Shilenko D A and Leonov I V 2023 Phys. Rev. B 108 125105
[17] Wú W, Luo Z, Yao D X, and Wang M 2024 Sci. Chin. Phys. Mech. & Astron. 67 117402
[18] Cao Y and Yang Y F 2024 Phys. Rev. B 109 L081105
[19] Chen X J, Jiang P H, Li J, Zhong Z C, and Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con]
[20] Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002
[21] Lu C, Pan Z, Yang F, and Wu C 2024 Phys. Rev. Lett. 132 146002
[22] Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2024 Nat. Commun. 15 2470
[23] Oh H and Zhang Y H 2023 Phys. Rev. B 108 174511
[24] Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, and Si Q M 2023 arXiv:2307.16697 [cond-mat.supr-con]
[25] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, and Su G 2024 Phys. Rev. Lett. 132 036502
[26] Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108
[27] Jiang K, Wang Z, and Zhang F C 2024 Chin. Phys. Lett. 41 017402
[28] Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2023 Phys. Rev. B 108 165141
[29] Huang J, Wang Z D, and Zhou T 2023 Phys. Rev. B 108 174501
[30] Qin Q and Yang Y F 2023 Phys. Rev. B 108 L140504
[31] Tian Y H, Chen Y, Wang J M, He R Q, and Lu Z Y 2024 Phys. Rev. B 109 165154
[32] Lu D C, Li M, Zeng Z Y, Hou W D, Wang J, Yang F, and You Y Z 2023 arXiv:2308.11195 [cond-mat.str-el]
[33] Jiang R, Hou J, Fan Z, Lang Z J, and Ku W 2024 Phys. Rev. Lett. 132 126503
[34] Kitamine N, Ochi M, and Kuroki K 2023 arXiv:2308.12750 [cond-mat.supr-con]
[35] Luo Z H, Lv B, Wang M, Wú W, and Yao D X 2023 arXiv:2308.16564 [cond-mat.str-el]
[36] Zhang J X, Zhang H K, You Y Z, and Weng Z Y 2023 arXiv:2309.05726 [cond-mat.str-el]
[37] Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, and Kuroki K 2024 Phys. Rev. B 109 144511
[38] Lange H, Homeier L, Demler E, Schollwöck U, Bohrdt A, and Grusdt F 2023 arXiv:2309.13040 [cond-mat.str-el]
[39] Geisler B, Hamlin J J, Stewart G R, Hennig R G, and Hirschfeld P J 2024 npj Quantum Mater. 9 38
[40] Yang H, Oh H, and Zhang Y H 2023 arXiv:2309.15095 [cond-mat.str-el]
[41] Rhodes L C and Wahl P 2024 Phys. Rev. Mater. 8 044801
[42] Lange H, Homeier L, Demler E, Schollwöck U, Grusdt F, and Bohrdt A 2023 arXiv:2309.15843 [cond-mat.str-el]
[43] LaBollita H, Pardo V, Norman M R, and Botana A S 2023 arXiv:2309.17279 [cond-mat.str-el]
[44] Kumar U, Melnick C, and Kotliar G 2023 arXiv:2310.00983 [cond-mat.str-el]
[45] Lu C, Pan Z M, Yang F, and Wu C J 2023 arXiv: 2310.02915 [cond-mat.str-el]
[46] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[47] Proust C and Taillefer L 2019 Annu. Rev. Condens. Matter Phys. 10 409
[48] Ubbens M U and Lee P A 1994 Phys. Rev. B 50 438
[49] Kuboki K and Lee P A 1995 J. Phys. Soc. Jpn. 64 3179
[50] Maly J, Liu D Z, and Levin K 1996 Phys. Rev. B 53 6786
[51] Nazarenko A and Dagotto E 1996 Phys. Rev. B 54 13158
[52] Medhi A, Basu S, and Kadolkar C 2009 Eur. Phys. J. B 72 583
[53] Bohrdt A, Homeier L, Reinmoser C, Demler E, and Grusdt F 2021 Ann. Phys. 435 168651
[54] Bohrdt A, Homeier L, Bloch I, Demler E, and Grusdt F 2022 Nat. Phys. 18 651
[55] Hirthe S, Chalopin T, Bourgund D, Bojović P, Bohrdt A, Demler E, Grusdt F, Bloch I, and Hilker T A 2023 Nature 613 463
[56] Eder R, Ohta Y, and Maekawa S 1995 Phys. Rev. B 52 7708
[57] Vojta M and Becker K W 1999 Phys. Rev. B 60 15201
[58] Zhao H and Engelbrecht J R 2005 Phys. Rev. B 71 054508
[59] Zegrodnik M and Spałek J 2017 Phys. Rev. B 95 024507
[60] Kotliar G and Liu J 1988 Phys. Rev. B 38 5142
[61] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[62] Pardo V and Pickett W E 2011 Phys. Rev. B 83 245128
Related articles from Frontiers Journals
[1] Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang. High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(1): 087401
[2] Long Xiong, Ming Gong, Zhao-Xiang Fang, and Rui Sun. Ground State and Its Topological Properties of Three-Dimensional Spin-Orbit Coupled Degenerate Fermi Gases[J]. Chin. Phys. Lett., 2023, 40(12): 087401
[3] Xiao-Ting Chen, Chun-Hui Liu, Dong-Hui Xu, and Chui-Zhen Chen. Majorana Corner Modes and Flat-Band Majorana Edge Modes in Superconductor/Topological-Insulator/Superconductor Junctions[J]. Chin. Phys. Lett., 2023, 40(9): 087401
[4] Jiacheng Ye, Jun Li, DingYong Zhong, and Dao-Xin Yao. Possible Superconductivity in Biphenylene[J]. Chin. Phys. Lett., 2023, 40(7): 087401
[5] Ze-Long Wang, Rui-Ying Mao, Da Wang, and Qiang-Hua Wang. Effect of Anisotropic Impurity Scattering in D-Wave Superconductors[J]. Chin. Phys. Lett., 2023, 40(5): 087401
[6] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 087401
[7] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 087401
[8] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 087401
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 087401
[10] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 087401
[11] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 087401
[12] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 087401
[13] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 087401
[14] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 087401
[15] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 087401
Viewed
Full text


Abstract