Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 087101    DOI: 10.1088/0256-307X/41/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Exciton Bose–Einstein Condensation in Transition Metal Dichalcogenide Monolayer under In-Plane Magnetic Fields
Dengfeng Wang1,2†, Yingda Chen1,2†, Zhi-Chuan Niu1,2, Wen-Kai Lou1,2*, and Kai Chang1,2,3*
1SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3School of Physics, Zhejiang University, Hangzhou 310027, China
Cite this article:   
Dengfeng Wang, Yingda Chen, Zhi-Chuan Niu et al  2024 Chin. Phys. Lett. 41 087101
Download: PDF(4962KB)   PDF(mobile)(4931KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the Gross–Pitaevskii equation, we theoretically investigate exciton Bose–Einstein condensation (BEC) in transition metal dichalcogenide monolayers (TMDC-MLs) under in-plane magnetic fields. We observe that the in-plane magnetic fields exert a strong influence on the exciton BEC wave functions in TMDC-MLs because of the mixing of the bright and dark exciton states via Zeeman effect. This leads to the brightening of the dark exciton BEC states. The competition between the dipole–dipole interactions caused by the long-range Coulomb interaction and the Zeeman effect induced by the in-plane magnetic fields can effectively regulate dark exciton BEC states. Our findings emphasize the utility of TMD-MLs as platforms for investigating collective phenomenon involving excited states.
Received: 20 April 2024      Editors' Suggestion Published: 16 August 2024
PACS:  71.35.-y (Excitons and related phenomena)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  71.35.Lk (Collective effects (Bose effects, phase space filling, and excitonic phase transitions))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/087101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dengfeng Wang
Yingda Chen
Zhi-Chuan Niu
Wen-Kai Lou
and Kai Chang
[1] Bose 1924 Z. Phys. 26 178
[2]Einstein A 1924 Sitzungsber. Kgl. Preuss. Akad. Wiss. 18 261
[3] Laussy F P, Kavokin A V, and Shelykh I A 2010 Phys. Rev. Lett. 104 106402
[4] Allen J F and Misener A D 1938 Nature 141 75
[5] Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198
[6] Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C, and Zhang J 2023 Nature 615 231
[7] Zapf V, Jaime M, and Batista C D 2014 Rev. Mod. Phys. 86 563
[8] Butov L V, Zrenner A, Abstreiter G, Böhm G, and Weimann G 1994 Phys. Rev. Lett. 73 304
[9] Snoke D, Denev S, Liu Y, Pfeiffer L, and West K 2002 Nature 418 754
[10] Fukuzawa T, Mendez E E, and Hong J M 1990 Phys. Rev. Lett. 64 3066
[11] Butov L V 2003 Solid State Commun. 127 89
[12] Zhu B, Chen X, and Cui X 2015 Sci. Rep. 5 9218
[13] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y L, Aslan O B, Reichman D R, Hybertsen M S, and Heinz T F 2014 Phys. Rev. Lett. 113 076802
[14] Song Y K, Jia C J, Xiong H Y et al. 2023 Nat. Commun. 14 1116
[15] Fogler M M, Butov L V, and Novoselov K S 2014 Nat. Commun. 5 4555
[16] Xiao D, Liu G B, Feng W, Xu X, and Yao W 2012 Phys. Rev. Lett. 108 196802
[17] Zhu Z Y, Cheng Y C, and Schwingenschlögl U 2011 Phys. Rev. B 84 153402
[18] Kośmider K, González J W, and Fernández-Rossier J 2013 Phys. Rev. B 88 245436
[19] Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, and Crommie M F 2014 Nat. Mater. 13 1091
[20] Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[21] Blundo E, Felici M, Yildirim T, Pettinari G, Tedeschi D, Miriametro A, Liu B, Ma W, Lu Y, and Polimeni A 2020 Phys. Rev. Res. 2 012024
[22] Echeverry J P, Urbaszek B, Amand T, Marie X, and Gerber I C 2016 Phys. Rev. B 93 121107
[23] Palummo M, Bernardi M, and Grossman J C 2015 Nano Lett. 15 2794
[24] Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G, and Zhang X 2014 Nature 513 214
[25] Kishida H, Nagasawa Y, Imamura S, and Nakamura A 2008 Phys. Rev. Lett. 100 097401
[26] Zhang X X, You Y, Zhao S Y F, and Heinz T F 2015 Phys. Rev. Lett. 115 257403
[27] Chen Y, Huang Y, Lou W, Cai Y, and Chang K 2020 Phys. Rev. B 102 165413
[28] Molas M R, Faugeras C, Slobodeniuk A O, Nogajewski K, Bartos M, Basko D M, and Potemski M 2017 2D Mater. 4 021003
[29] Slobodeniuk A O and Basko D M 2016 2D Mater. 3 035009
[30] Rainer G, Smoliner J, Gornik E, Böhm G, and Weimann G 1995 Phys. Rev. B 51 17642
[31] Camenzind L C, Yu L, Stano P, Zimmerman J D, Gossard A C, Loss D, and Zumbühl D M 2019 Phys. Rev. Lett. 122 207701
[32] Dey P, Yang L, Robert C, Wang G, Urbaszek B, Marie X, and Crooker S A 2017 Phys. Rev. Lett. 119 137401
[33] Kapuściński P, Delhomme A, Vaclavkova D, Slobodeniuk A O, Grzeszczyk M, Bartos M, Watanabe K, Taniguchi T, Faugeras C, and Potemski M 2021 Commun. Phys. 4 186
[34] Robert C, Han B, Kapuscinski P, Delhomme A, Faugeras C, Amand T, Molas M R, Bartos M, Watanabe K, Taniguchi T, Urbaszek B, Potemski M, and Marie X 2020 Nat. Commun. 11 4037
[35] He W Y, Zhou B T, He J J, Yuan N F Q, Zhang T, and Law K T 2018 Commun. Phys. 1 40
[36] Bondarev I V and Lozovik Y E 2022 Commun. Phys. 5 315
[37] Sethi G, Zhou Y, Zhu L, Yang L, and Liu F 2021 Phys. Rev. Lett. 126 196403
[38] Sethi G, Cuma M, and Liu F 2023 Phys. Rev. Lett. 130 186401
[39]Keldysh L V 1979 JETP Lett. 29 716
[40] Hu H, Ramachandhran B, Pu H, and Liu X J 2012 Phys. Rev. Lett. 108 010402
[41] Zhang Y, Mao L, and Zhang C 2012 Phys. Rev. Lett. 108 035302
[42] Cai Y, Yuan Y, Rosenkranz M, Pu H, and Bao W 2018 Phys. Rev. A 98 023610
[43] Bao W and Cai Y 2015 SIAM J. Appl. Math. 75 492
[44] Bhat I A, Mithun T, and Dey B 2023 Phys. Rev. E 107 044210
[45] Cai Y, Rosenkranz M, Lei Z, and Bao W 2010 Phys. Rev. A 82 043623
[46] Shi Z and Huang G 2023 Phys. Rev. E 107 024214
[47] Edmonds M and Nitta M 2020 Phys. Rev. A 102 011303
[48] Bao W and Cai Y 2018 Commun. Comput. Phys. 24 899
[49] Kormányos A, Burkard G, Gmitra M, Fabian J, Zólyomi V, Drummond N D, and Fal'ko V 2015 2D Mater. 2 022001; Corrigendum: [2015 2D Mater. 2 049501]
[50] Berkelbach T C, Hybertsen M S, and Reichman D R 2013 Phys. Rev. B 88 045318
[51] Naraschewski M, Wallis H, Schenzle A, Cirac J I, and Zoller P 1996 Phys. Rev. A 54 2185
[52] Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J, and Heinz T F 2015 Phys. Rev. Lett. 115 126802
Related articles from Frontiers Journals
[1] Li Zhu, Wei-Min Zhao, Zhen-Yu Jia, Huiping Li, Xuedong Xie, Qi-Yuan Li, Qi-Wei Wang, Li-Guo Dou, Ju-Gang Hu, Yi Zhang, Wenguang Zhu, Shun-Li Yu, Jian-Xin Li, and Shao-Chun Li. Electron-Exciton Coupling in 1T-TiSe$_{2}$ Bilayer[J]. Chin. Phys. Lett., 2023, 40(5): 087101
[2] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 087101
[3] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 087101
[4] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 087101
[5] Xin-Yue Zhang, Gui-Li Yu, Li-Hua Wang, Gang Tang. Combined Effect of Uniaxial Strain and Magnetic Field on the Exciton States in Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2018, 35(8): 087101
[6] Yan Lu, Wen-Gang Lu, Li Wang. Structure Dependence of Excitonic Effects in Chiral Graphene Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(1): 087101
[7] Gui-Li Yu, Yong-Lei Jia, Gang Tang. Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes[J]. Chin. Phys. Lett., 2016, 33(03): 087101
[8] YU Gui-Li, LI Gui-Chen, JIA Yong-Lei, TANG Gang. States of Excitons and Linear Optical Spectra in Metallic Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2014, 31(09): 087101
[9] ZHANG Yan-Fei, ZHAO Su-Ling, XU Zheng, KONG Chao. The Formation of Exciplex and Improved Turn-on Voltage in a Hybrid Organic-Inorganic Light-Emitting Diode[J]. Chin. Phys. Lett., 2012, 29(11): 087101
[10] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 087101
[11] CHU Sai-Sai, GAO Chao, WANG Shu-Feng**, GONG Qi-Huang** . Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution[J]. Chin. Phys. Lett., 2011, 28(11): 087101
[12] LI Xiu-Ping, WEI Hua-Rong, XU Li-Ping, GONG Jian-Ping, YAN Wei-Xian . Tunneling Processes in Optically Excited Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(10): 087101
[13] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 087101
[14] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 087101
[15] YANG Shao-Peng**, HUANG Da, GE Da-Yong, LIU Bo-Ya, WANG Li-Shun, FU Guang-Sheng . Dynamics of Exciton Diffusion in PVK:Phosphorescent Materials/Al Hetero-Structures[J]. Chin. Phys. Lett., 2011, 28(8): 087101
Viewed
Full text


Abstract