PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Ionization Potential Depression Model for Warm/Hot and Dense Plasmas |
Chensheng Wu1,2†, Fuyang Zhou1†, Jun Yan1, Xiang Gao1*, Yong Wu1*, Chunhua Zeng2, and Jianguo Wang1 |
1Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 2Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
|
|
Cite this article: |
Chensheng Wu, Fuyang Zhou, Jun Yan et al 2024 Chin. Phys. Lett. 41 085202 |
|
|
Abstract For warm/hot and dense plasmas (WDPs), ionization potential depression (IPD) plays a crucial role in determining its ionization balance and understanding the resultant microscopic plasma properties. A sophisticated and unified IPD model is necessary to resolve those existing discrepancies between theoretical and experimental results. However, the applicability of those widely used IPD models nowadays is limited, especially for the nonlocal thermodynamic equilibrium (non-LTE) dense plasma produced by short-pulse laser. In this work, we propose an IPD model that considers inelastic atomic processes, in which three-body recombination and collision ionization processes are found to play a crucial role in determining the electron distribution and IPD for a WDP. This IPD model is validated by reproducing latest experimental results of Al plasmas with a wide-range condition of 70 eV–700 eV temperature and $0.2$–$3$ times solid density, as well as a typical non-LTE system of hollow Al ions. It is demonstrated that the present IPD model has a significant temperature dependence due to the consideration of the inelastic collision processes. With a lower computational cost and wider application range of plasma conditions, the proposed model is expected to provide a promising tool to study the ionization balance and the atomic processes, as well as the related radiation and particle transports properties of the WDP.
|
|
Received: 27 May 2024
Published: 26 August 2024
|
|
PACS: |
52.20.-j
|
(Elementary processes in plasmas)
|
|
32.10.Hq
|
(Ionization potentials, electron affinities)
|
|
52.25.Os
|
(Emission, absorption, and scattering of electromagnetic radiation ?)
|
|
41.60.Cr
|
(Free-electron lasers)
|
|
|
|
|
[1] | Tayler R J 1994 The Stars: Their Structure and Evolution (Cambridge: Cambridge University Press) |
[2] | Helled R, Anderson J D, Podolak M, and Schubert G 2011 Astrophys. J. 726 15 |
[3] | Ciricosta O, Vinko S M, Chung H K et al. 2012 Phys. Rev. Lett. 109 065002 |
[4] | Hoarty D J, Allan P, James S F et al. 2013 Phys. Rev. Lett. 110 265003 |
[5] | Ciricosta O, Vinko S M, Barbrel B et al. 2016 Nat. Commun. 7 11713 |
[6] | Vinko S M, Ciricosta O, Cho B I et al. 2012 Nature 482 59 |
[7] | Gomez M R, Slutz S A, Sefkow A B et al. 2014 Phys. Rev. Lett. 113 155003 |
[8] | Nagayama T, Bailey J E, Loisel G P et al. 2019 Phys. Rev. Lett. 122 235001 |
[9] | Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, and Bailey J E 2017 High Energy Density Phys. 24 39 |
[10] | Bailey J E, Nagayama T, Loisel G P et al. 2015 Nature 517 56 |
[11] | Nguyen H, Koenig M, Benredjem D, Caby M, and Coulaud G 1986 Phys. Rev. A 33 1279 |
[12] | Chang T N, Fang T K, and Gao X 2015 Phys. Rev. A 91 063422 |
[13] | Janev R K, Zhang S B, and Wang J G 2016 Matter Radiat. Extremes 1 237 |
[14] | Fang T K, Wu C S, Gao X, and Chang T N 2017 Phys. Rev. A 96 052502 |
[15] | Fang T K, Wu C S, Gao X, and Chang T N 2018 Phys. Plasmas 25 102116 |
[16] | Wu C, Chen S, Chang T N, and Gao X 2019 J. Phys. B 52 185004 |
[17] | Ma Y, Liu L, Xie L, Wu Y, Qu Y, and Wang J 2020 J. Quant. Spectrosc. Radiat. Transfer 241 106731 |
[18] | Chang T N, Fang T K, Wu C S, and Gao X 2021 Phys. Scr. 96 124012 |
[19] | Chang T N and Gao X 2022 Phys. Rev. A 105 056801 |
[20] | Wu C S, Wu Y, Yan J, Chang T N, and Gao X 2022 Phys. Rev. E 105 015206 |
[21] | Mazzitelli G and Mattioli M 2002 At. Data Nucl. Data Tables 82 313 |
[22] | Zeng J, Li Y, Gao C, and Yuan J 2020 Astron. Astrophys. 634 A117 |
[23] | Salzman D 1998 Atomic Physics in Hot Plasmas (New York: Oxfold University Press) |
[24] | Griem H R 1986 Principles of Plasma Spectroscopy. In: Thompson J E and Luessen L H (eds) Fast Electrical and Optical Measurements. NATO ASI Series (Dordrecht: Springer) vol 108/109 pp. 885–910 |
[25] | Danson C N and Gizzi L A 2023 High Power Laser Sci. Eng. 11 e40 |
[26] | Glenzer S H and Redmer R 2009 Rev. Mod. Phys. 81 1625 |
[27] | Nettelmann N, Redmer R, and Blaschke D 2008 Phys. Part. Nucl. 39 1122 |
[28] | Glenzer S H, MacGowan B J, Michel P et al. 2010 Science 327 1228 |
[29] | Fäustlin R R, Bornath T, Döppner T et al. 2010 Phys. Rev. Lett. 104 125002 |
[30] | Beiersdorfer P, Brown G V, McKelvey A, Shepherd R, Hoarty D J, Brown C R D, Hill M P, Hobbs L M R, James S F, Morton J, and Wilson L 2019 Phys. Rev. A 100 012511 |
[31] | Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, and Froula D H 2017 Phys. Rev. E 95 063204 |
[32] | Stewart J C and Jr Pyatt K D 1966 Astrophys. J. 144 1203 |
[33] | Ecker G and Kröll W 1963 Phys. Fluids 6 62 |
[34] | Son S K, Thiele R, Jurek Z, Ziaja B, and Santra R 2014 Phys. Rev. X 4 031004 |
[35] | Belkhiri M and Poirier M 2013 High Energy Density Phys. 9 609 |
[36] | Crowley B J B 2014 High Energy Density Phys. 13 84 |
[37] | Calisti A, Ferri S, and Talin B 2015 J. Phys. B 48 224003 |
[38] | Stransky M 2016 Phys. Plasmas 23 012708 |
[39] | Lin C 2019 Phys. Plasmas 26 122707 |
[40] | Vinko S M, Ciricosta O, and Wark J S 2014 Nat. Commun. 5 3533 |
[41] | Hu S X 2017 Phys. Rev. Lett. 119 065001 |
[42] | Jin R, Abdullah M M, Jurek Z, Santra R, and Son S K 2021 Phys. Rev. E 103 023203 |
[43] | Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer Science+Business Media) |
[44] | Zhou F, Qu Y, Gao J, Ma Y, Wu Y, and Wang J 2021 Commun. Phys. 4 148 |
[45] | Debye P and Hückel E 1923 Phys. Z. 24 185 |
[46] | Chen Z B and Wang K 2020 Radiat. Phys. Chem. 172 108816 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|