Chin. Phys. Lett.  2024, Vol. 41 Issue (8): 085202    DOI: 10.1088/0256-307X/41/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Ionization Potential Depression Model for Warm/Hot and Dense Plasmas
Chensheng Wu1,2†, Fuyang Zhou1†, Jun Yan1, Xiang Gao1*, Yong Wu1*, Chunhua Zeng2, and Jianguo Wang1
1Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
2Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
Cite this article:   
Chensheng Wu, Fuyang Zhou, Jun Yan et al  2024 Chin. Phys. Lett. 41 085202
Download: PDF(2110KB)   PDF(mobile)(2136KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For warm/hot and dense plasmas (WDPs), ionization potential depression (IPD) plays a crucial role in determining its ionization balance and understanding the resultant microscopic plasma properties. A sophisticated and unified IPD model is necessary to resolve those existing discrepancies between theoretical and experimental results. However, the applicability of those widely used IPD models nowadays is limited, especially for the nonlocal thermodynamic equilibrium (non-LTE) dense plasma produced by short-pulse laser. In this work, we propose an IPD model that considers inelastic atomic processes, in which three-body recombination and collision ionization processes are found to play a crucial role in determining the electron distribution and IPD for a WDP. This IPD model is validated by reproducing latest experimental results of Al plasmas with a wide-range condition of 70 eV–700 eV temperature and $0.2$–$3$ times solid density, as well as a typical non-LTE system of hollow Al ions. It is demonstrated that the present IPD model has a significant temperature dependence due to the consideration of the inelastic collision processes. With a lower computational cost and wider application range of plasma conditions, the proposed model is expected to provide a promising tool to study the ionization balance and the atomic processes, as well as the related radiation and particle transports properties of the WDP.
Received: 27 May 2024      Published: 26 August 2024
PACS:  52.20.-j (Elementary processes in plasmas)  
  32.10.Hq (Ionization potentials, electron affinities)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  41.60.Cr (Free-electron lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/8/085202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I8/085202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chensheng Wu
Fuyang Zhou
Jun Yan
Xiang Gao
Yong Wu
Chunhua Zeng
and Jianguo Wang
[1] Tayler R J 1994 The Stars: Their Structure and Evolution (Cambridge: Cambridge University Press)
[2] Helled R, Anderson J D, Podolak M, and Schubert G 2011 Astrophys. J. 726 15
[3] Ciricosta O, Vinko S M, Chung H K et al. 2012 Phys. Rev. Lett. 109 065002
[4] Hoarty D J, Allan P, James S F et al. 2013 Phys. Rev. Lett. 110 265003
[5] Ciricosta O, Vinko S M, Barbrel B et al. 2016 Nat. Commun. 7 11713
[6] Vinko S M, Ciricosta O, Cho B I et al. 2012 Nature 482 59
[7] Gomez M R, Slutz S A, Sefkow A B et al. 2014 Phys. Rev. Lett. 113 155003
[8] Nagayama T, Bailey J E, Loisel G P et al. 2019 Phys. Rev. Lett. 122 235001
[9] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, and Bailey J E 2017 High Energy Density Phys. 24 39
[10] Bailey J E, Nagayama T, Loisel G P et al. 2015 Nature 517 56
[11] Nguyen H, Koenig M, Benredjem D, Caby M, and Coulaud G 1986 Phys. Rev. A 33 1279
[12] Chang T N, Fang T K, and Gao X 2015 Phys. Rev. A 91 063422
[13] Janev R K, Zhang S B, and Wang J G 2016 Matter Radiat. Extremes 1 237
[14] Fang T K, Wu C S, Gao X, and Chang T N 2017 Phys. Rev. A 96 052502
[15] Fang T K, Wu C S, Gao X, and Chang T N 2018 Phys. Plasmas 25 102116
[16] Wu C, Chen S, Chang T N, and Gao X 2019 J. Phys. B 52 185004
[17] Ma Y, Liu L, Xie L, Wu Y, Qu Y, and Wang J 2020 J. Quant. Spectrosc. Radiat. Transfer 241 106731
[18] Chang T N, Fang T K, Wu C S, and Gao X 2021 Phys. Scr. 96 124012
[19] Chang T N and Gao X 2022 Phys. Rev. A 105 056801
[20] Wu C S, Wu Y, Yan J, Chang T N, and Gao X 2022 Phys. Rev. E 105 015206
[21] Mazzitelli G and Mattioli M 2002 At. Data Nucl. Data Tables 82 313
[22] Zeng J, Li Y, Gao C, and Yuan J 2020 Astron. Astrophys. 634 A117
[23] Salzman D 1998 Atomic Physics in Hot Plasmas (New York: Oxfold University Press)
[24] Griem H R 1986 Principles of Plasma Spectroscopy. In: Thompson J E and Luessen L H (eds) Fast Electrical and Optical Measurements. NATO ASI Series (Dordrecht: Springer) vol 108/109 pp. 885–910
[25] Danson C N and Gizzi L A 2023 High Power Laser Sci. Eng. 11 e40
[26] Glenzer S H and Redmer R 2009 Rev. Mod. Phys. 81 1625
[27] Nettelmann N, Redmer R, and Blaschke D 2008 Phys. Part. Nucl. 39 1122
[28] Glenzer S H, MacGowan B J, Michel P et al. 2010 Science 327 1228
[29] Fäustlin R R, Bornath T, Döppner T et al. 2010 Phys. Rev. Lett. 104 125002
[30] Beiersdorfer P, Brown G V, McKelvey A, Shepherd R, Hoarty D J, Brown C R D, Hill M P, Hobbs L M R, James S F, Morton J, and Wilson L 2019 Phys. Rev. A 100 012511
[31] Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, and Froula D H 2017 Phys. Rev. E 95 063204
[32] Stewart J C and Jr Pyatt K D 1966 Astrophys. J. 144 1203
[33] Ecker G and Kröll W 1963 Phys. Fluids 6 62
[34] Son S K, Thiele R, Jurek Z, Ziaja B, and Santra R 2014 Phys. Rev. X 4 031004
[35] Belkhiri M and Poirier M 2013 High Energy Density Phys. 9 609
[36] Crowley B J B 2014 High Energy Density Phys. 13 84
[37] Calisti A, Ferri S, and Talin B 2015 J. Phys. B 48 224003
[38] Stransky M 2016 Phys. Plasmas 23 012708
[39] Lin C 2019 Phys. Plasmas 26 122707
[40] Vinko S M, Ciricosta O, and Wark J S 2014 Nat. Commun. 5 3533
[41] Hu S X 2017 Phys. Rev. Lett. 119 065001
[42] Jin R, Abdullah M M, Jurek Z, Santra R, and Son S K 2021 Phys. Rev. E 103 023203
[43] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer Science+Business Media)
[44] Zhou F, Qu Y, Gao J, Ma Y, Wu Y, and Wang J 2021 Commun. Phys. 4 148
[45]Debye P and Hückel E 1923 Phys. Z. 24 185
[46] Chen Z B and Wang K 2020 Radiat. Phys. Chem. 172 108816
Related articles from Frontiers Journals
[1] HE Xin, DANG Wei-Hua, JIA Hong-Hui, YIN Hong-Wei, ZHANG Hai-Liang, CHANG Sheng-Li, YANG Jun-Cai. Analysis of Atomic Electronic Excitation in Nonequilibrium Air Plasmas[J]. Chin. Phys. Lett., 2014, 31(09): 085202
[2] ZHANG Song-Bin, QI Yue-Ying, QU Yi-Zhi, CHEN Xiang-Jun, WANG Jian-Guo. Positron-Impact Excitation of Hydrogen Atoms in Debye Plasmas[J]. Chin. Phys. Lett., 2010, 27(1): 085202
[3] JIN Feng-Tao, HUANG Tian-Xuan, DING Yong-Kun, ZHENG Zhi-Jian, YUAN Jian-Min. Orbital Relaxation Effects in the Calculation of Aluminum Kα Absorptions[J]. Chin. Phys. Lett., 2009, 26(5): 085202
[4] SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium[J]. Chin. Phys. Lett., 2008, 25(11): 085202
[5] JIN Feng-Tao, ZENG Jiao-Long, YUAN Jian-Min. Population Diagnostics of a Hot NaBr Plasma by Detailed Simulation of Absorption Spectra[J]. Chin. Phys. Lett., 2006, 23(9): 085202
[6] ZENG Jiao-Long, ZHAO Gang, YUAN Jian-Min,. Detailed Radiative Opacity Studies of a High-Temperature Gold Plasma[J]. Chin. Phys. Lett., 2006, 23(3): 085202
[7] ZHANG Xian-Bin, SHI Wei, LI Hua. Reduce of Threshold of Laser Inducing Breakdown in Atmosphere by Introducing an Electric Spark[J]. Chin. Phys. Lett., 2005, 22(11): 085202
[8] JIN Feng-Tao, YUAN Jian-Min. Open M-shell Opacity of Bromine Plasma in Comparison of the Detailed Level Accounting Model with the Average Atom Model[J]. Chin. Phys. Lett., 2005, 22(9): 085202
[9] ZHENG Xu-Tao. Non-Monotonicity of Excited State Populations Observed in a Cu--He Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2005, 22(6): 085202
[10] ZHENG Xu-Tao,. Coronal and Local Thermodynamic Equilibriums in a Hollow Cathode Discharge[J]. Chin. Phys. Lett., 2005, 22(5): 085202
[11] ZHANG Yuan-Tao, WANG De-Zhen, WANG Yan-Hui, LIU Cheng-Sen. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier[J]. Chin. Phys. Lett., 2005, 22(1): 085202
[12] WU Ze-Qing, PANG Jin-Qiao, HAN Guo-Xing, YAN Jun. Ionization Balance in Non-Local-Thermodynamic-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(5): 085202
[13] WANG Fei-Lu, ZHAO Gang, YUAN Jian-Min,. Opacity of Hot and Dense Stellar Material: Flexible for Changes in Composition and Abundance[J]. Chin. Phys. Lett., 2003, 20(12): 085202
[14] ZENG Jiao-Long, JIN Feng-Tao, ZHAO Gang, YUAN Jian-Min. Temperature Diagnostics for Iron Plasmas by Means of Transmission Spectrum Obtained by Accurate Atomic Data[J]. Chin. Phys. Lett., 2003, 20(6): 085202
[15] WU Ze-Qing, HAN Guo-Xing, YAN Jun, PANG Jin-Qiao. Theoretical Calculations of Isoelectronic Line-Ratio for Plasma Electron Temperature Diagnosis[J]. Chin. Phys. Lett., 2003, 20(4): 085202
Viewed
Full text


Abstract