PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Simulation of Rotating Asymmetric Sideways Forces during Vertical Displacement Events in CFETR |
Changzhi Jiang, Shunwen Wang, Zhenyu Zhou, Di Hu*, Bo Li*, and JOREK team† |
School of Physics, Beihang University, Beijing 100191, China |
|
Cite this article: |
Changzhi Jiang, Shunwen Wang, Zhenyu Zhou et al 2024 Chin. Phys. Lett. 41 085201 |
|
|
Abstract Tokamak plasmas with elongated cross sections are susceptible to vertical displacement events (VDEs), which can damage the first wall via heat flux or electromagnetic (EM) forces. We present a 3D nonlinear reduced magnetohydrodynamic (MHD) simulation of CFETR plasma during a cold VDE following the thermal quench, focusing on the relationship among the EM force, plasma displacement, and the $n=1$ mode. The dominant mode, identified as $m/n = 2/1$, becomes destabilized when most of the current is contracted within the $q = 2$ surface. The displacement of the plasma current centroid is less than that of the magnetic axis due to the presence of SOL current in the open field line region. Hence, the symmetric component of the induced vacuum vessel current is significantly mitigated. The direction of the sideways force keeps a constant phase approximately compared to the asymmetric component of the vacuum vessel current and the SOL current, which in turn keep in-phase with the dominant $2/1$ mode. Their amplitudes are also closely associated with the growth of the dominant mode. These findings provide insights into potential methods for controlling the phase and amplitude of sideways forces during VDEs in the future.
|
|
Received: 16 April 2024
Published: 21 August 2024
|
|
PACS: |
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
52.55.-s
|
(Magnetic confinement and equilibrium)
|
|
|
|
|
[1] | Doyle E, Houlberg W, Kamada Y et al. 2007 Nucl. Fusion 47 S18 |
[2] | de Vries P C, Johnson M F, Segui I, and JET EFDA Contributors 2009 Nucl. Fusion 49 055011 |
[3] | Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P, and Xiao B J, and the CFETR Design Team 2019 Nucl. Fusion 59 112010 |
[4] | Riccardo V, Walker S, and Noll P 2000 Fusion Eng. Des. 47 389 |
[5] | Pustovitov V D, Rubinacci G, and Villone F 2021 Nucl. Fusion 61 036018 |
[6] | Mironov D V and Pustovitov V D 2017 Phys. Plasmas 24 092508 |
[7] | Sovinec C R and Bunkers K J 2019 Plasma Phys. Control. Fusion 61 024003 |
[8] | Abate D, Yanovskiy V, Bonotto M, Cordaro L, Marchiori G, Pigatto L, and Pustovitov V D 2023 Nucl. Fusion 63 126025 |
[9] | Artola F J, Lackner K, Huijsmans G T A, Hoelzl M, Nardon E, and Loarte A 2020 Phys. Plasmas 27 032501 |
[10] | Artola F J, Loarte A, Hoelzl M, Lehnen M, Schwarz N, and the JOREK Team 2022 Nucl. Fusion 62 056023 |
[11] | Xue L, Duan X R, Zheng G Y, Liu Y Q, Yan S L, Dokuka V V, Khayrutdinov R R, and Lukash V E 2015 Chin. Phys. Lett. 32 065203 |
[12] | Xue L, Zheng G Y, Duan X R, Liu Y Q, Hoang G T, Li J X, Dokuka V N, Lukash V E, and Khayrutdinov R R 2019 Fusion Eng. Des. 143 48 |
[13] | Strauss H R, Paccagnella R, and Breslau J 2010 Phys. Plasmas 17 082505 |
[14] | Khayrutdinov R R, Lukash V E, and Pustovitov V D 2016 Plasma Phys. Control. Fusion 58 115012 |
[15] | Pustovitov V D, Rubinacci G, and Villone F 2017 Nucl. Fusion 57 126038 |
[16] | Clauser C F, Jardin S C, and Ferraro N M 2019 Nucl. Fusion 59 126037 |
[17] | Yanovskiy V V, Isernia N, Pustovitov V D, Scalera V, Villone F, Hromadka J, Imrisek M, Havlicek J, Hron M, and Panek R 2021 Nucl. Fusion 61 096016 |
[18] | Gerasimov S N, Abreu P, Baruzzo M, Drozdov V, Dvornova A, Havlicek J, Hender T C, Hronova O, Kruezi U, Li X, Markovič T, Pánek R, Rubinacci G, Tsalas M, Ventre S, Villone F, Zakharov L E, and JET Contributors 2015 Nucl. Fusion 55 113006 |
[19] | Strauss H, Joffrin E, Riccardo V, Breslau J, Paccagnella R, Fu G Y, and JET Contributors 2020 Phys. Plasmas 27 022508 |
[20] | Gerasimov S N, Hender T C, Morris J, Riccardo V, Zakharov L E, and JET EFDA Contributors 2014 Nucl. Fusion 54 073009 |
[21] | Lei M, Liu Z, Wu Q, Liu S, and Wang M 2023 Nucl. Fusion 63 126045 |
[22] | Hender T C, Wesley J C, Bialek J et al. 2007 Nucl. Fusion 47 S128 |
[23] | Schwarz N, Artola F J, Vannini F, Hoelzl M, Bernert M, Bock A, Driessen T, Dunne M, Giannone L, Heinrich P, de Marné P, Papp G, Pautasso G, Gerasimov S, the ASDEX Upgrade Team, JET Contributors, and Team the JOREK 2023 Nucl. Fusion 63 126016 |
[24] | Artola F J, Sovinec C R, Jardin S C, Hoelzl M, Krebs I, and Clauser C 2021 Phys. Plasmas 28 052511 |
[25] | Bandaru V, Hoelzl M, Reux C, Ficker O, Silburn S, Lehnen M, Eidietis N, JOREK Team, and JET Contributors 2021 Plasma Phys. Control. Fusion 63 035024 |
[26] | Hoelzl M, Huijsmans G, Pamela S et al. 2021 Nucl. Fusion 61 065001 |
[27] | Hölzl M, Merkel P, Huysmans G T A, Nardon E, Strumberger E, McAdams R, Chapman I, Günter S, and Lackner K 2012 J. Phys.: Conf. Ser. 401 012010 |
[28] | Merkel P and Strumberger E 2015 arXiv:1508.04911 [physics.plasm-ph] |
[29] | Craddock G G 1991 Phys. Fluids B 3 316 |
[30] | Strauss H 2018 Phys. Plasmas 25 020702 |
[31] | Pustovitov V D 2015 Nucl. Fusion 55 113032 |
[32] | Pustovitov V D 2022 Nucl. Fusion 62 026036 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|