FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Robust Transfer of Optical Frequency over 500 km Fiber Link with Instability of $10^{-21}$ |
Qian Zhou1,2,3,4, Xiang Zhang1,3*, Qi Zang1,3, Mengfan Wu1,3, Dan Wang1,2,3, Jie Liu1,3, Ruifang Dong1,2,3*, Tao Liu1,2,3,4*, and Shougang Zhang1,2,3 |
1National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600, China 4Hefei National Laboratory, Hefei 230088, China
|
|
Cite this article: |
Qian Zhou, Xiang Zhang, Qi Zang et al 2024 Chin. Phys. Lett. 41 084202 |
|
|
Abstract Our primary objective is to mitigate the adverse effects of temperature fluctuations on the optical frequency transmission system by reducing the length of the interferometer. Following optimization, the phase-temperature coefficient of the optical system is reduced to approximately 1.35 fs/K. By applying a sophisticated temperature control to the remained “out-of-loop” optics fiber, the noise floor of the system has been effectively lowered to $10^{-21}$ level. Based on this performance-enhanced transfer system, we demonstrate coherent transmission of optical frequency through 500-km spooled fiber link. After being actively compensated, the transfer instability of $4.5\times 10^{-16}$ at the averaging time of 1 s and $5.6\times 10^{-21}$ at 10000 s is demonstrated. The frequency uncertainty of received light at remote site relative to that of the origin light at local site is achieved to be $1.15\times 10^{-19}$. This enhanced system configuration is particularly well suited for future long-distance frequency transmission and comparison of the most advanced optical clock signals.
|
|
Received: 15 April 2024
Editors' Suggestion
Published: 27 August 2024
|
|
PACS: |
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
06.30.Ft
|
(Time and frequency)
|
|
|
|
|
[1] | Chou C W, Hume D B, Koelemeij J C J, Wineland D J, and Rosenband T 2010 Phys. Rev. Lett. 104 070802 |
[2] | Huntemann N, Sanner C, Lipphardt B, Tamm C, and Peik E 2016 Phys. Rev. Lett. 116 063001 |
[3] | Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Herbers S, Häfner S, Sterr U, and Lisdat C 2018 Phys. Rev. A 98 053443 |
[4] | Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, and Ludlow A D 2013 Science 341 1215 |
[5] | Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, and Amagai J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 2625 |
[6] | Tseng W H, Lin S Y, Feng K M, Fujieda M, and Maeno H 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 161 |
[7] | Delva P, Lodewyck J, Bilicki S, Bookjans E, Vallet G, Le Targat R, Pottie P E, Guerlin C, Meynadier F, Le Poncin-Lafitte C, Lopez O, Amy-Klein A, Lee W K, Quintin N, Lisdat C, Al-Masoudi A, Dörscher S, Grebing C, Grosche G, Kuhl A, Raupach S, Sterr U, Hill I R, Hobson R, Bowden W, Kronjäger J, Marra G, Rolland A, Baynes F N, Margolis H S, and Gill P 2017 Phys. Rev. Lett. 118 221102 |
[8] | Foreman S M, Holman K W, Hudson D D, Jones D J, and Ye J 2007 Rev. Sci. Instrum. 78 021101 |
[9] | Cantin E, Tønnes M, Le Targat R, Amy-Klein A, Lopez O, and Pottie P E 2021 New J. Phys. 23 053027 |
[10] | Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, and Holzwarth R 2013 Phys. Rev. Lett. 111 110801 |
[11] | Hu L, Tian X, Wang L, Wu G, and Chen J 2020 J. Lightwave Technol. 38 5916 |
[12] | Zhang X, Deng X, Zang Q, Jiao D, Gao J, Wang D, Zhou Q, Liu J, Xu G, Dong R, Liu T, and Zhang S 2022 Chin. Phys. Lett. 39 044201 |
[13] | Koke S, Kuhl A, Waterholter T, Raupach S M F, Lopez O, Cantin E, Quintin N, Amy-Klein A, Pottie P E, and Grosche G 2019 New J. Phys. 21 123017 |
[14] | Schioppo M, Kronjäger J, Silva A et al. 2022 Nat. Commun. 13 212 |
[15] | He Y B, Baldwin K G H, Orr B J et al. 2018 Optica 5 138 |
[16] | Clivati C, Ambrosini R, Artz T et al. 2017 Sci. Rep. 7 40992 |
[17] | Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, and Ye J 2016 Phys. Rev. D 94 124043 |
[18] | Roberts B M, Delva P, Al-Masoudi A, Amy-Klein A et al. 2020 New J. Phys. 22 093010 |
[19] | Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C, and Huntemann N 2023 Phys. Rev. Lett. 130 253001 |
[20] | Wcisło P, Ablewski P, Beloy K et al. 2018 Sci. Adv. 4 eaau4869 |
[21] | Ma L S, Jungner P, Ye J, and Hall J L 1994 Opt. Lett. 19 1777 |
[22] | Hu L, Tian X, Wu G, and Chen J 2020 Opt. Lett. 45 4308 |
[23] | Zhang X, Hu L, Deng X, Zang Q, Jiao D, Gao J, Wang D, Zhou Q, Liu J, Xu G, Liu T, Dong R, and Zhang S 2023 Opt. Laser Technol. 157 108738 |
[24] | Bercy A, Stefani F, Lopez O et al. 2014 Phys. Rev. A 90 061802 |
[25] | Calosso C E, Bertacco E, Calonico D, Clivati C, Costanzo G A, Frittelli M, Levi F, Mura A, and Godone A 2013 Opt. Lett. 39 1177 |
[26] | Coddington I, Swann W C, Lorini L et al. 2007 Nat. Photonics 1 283 |
[27] | Williams P A, Swann W C, and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284 |
[28] | Jürss T, Grosche G, and Koke S 2023 Photonics Res. 11 1113 |
[29] | Akatsuka T, Goh T, Imai H et al. 2020 Opt. Express 28 9186 |
[30] | Jiao D, Gao J, Deng X, Xu G, Liu J, Liu T, Dong R, and Zhang S 2020 Opt. Commun. 463 125460 |
[31] | Grosche G 2014 Opt. Lett. 39 2545 |
[32] | Newbury N R, Williams P A, and Swann W C 2007 Opt. Lett. 32 3056 |
[33] | Dawkins S T, McFerran J J, and Luiten A N 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 918 |
[34] | Raupach S M F, Koczwara A, and Grosche G 2015 Phys. Rev. A 92 021801 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|