GENERAL |
|
|
|
|
Diagnosing Thermalization Dynamics of Non-Hermitian Quantum Systems via GKSL Master Equations |
Yiting Mao1, Peigeng Zhong1, Haiqing Lin1,2*, Xiaoqun Wang2*, and Shijie Hu1,3* |
1Beijing Computational Science Research Center, Beijing 100084, China 2School of Physics, Zhejiang University, Hangzhou 310058, China 3Department of Physics, Beijing Normal University, Beijing 100875, China
|
|
Cite this article: |
Yiting Mao, Peigeng Zhong, Haiqing Lin et al 2024 Chin. Phys. Lett. 41 070301 |
|
|
Abstract The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos, recently giving rise to intense debates. The process of thermalization is intricate, involving many time-evolution trajectories in the reduced Hilbert space of the system. By considering two different expansion forms of the density matrices adopted in the biorthogonal and right-state time evolutions, we derive two versions of the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equations describing the non-Hermitian systems coupled to a bosonic heat bath in thermal equilibrium. By solving the equations, we identify a sufficient condition for thermalization under both time evolutions, resulting in Boltzmann biorthogonal and right-eigenstate statistics, respectively. This finding implies that the recently proposed biorthogonal random matrix theory needs an appropriate revision. Moreover, we exemplify the precise dynamics of thermalization and thermodynamic properties with test models.
|
|
Received: 28 March 2024
Published: 08 July 2024
|
|
PACS: |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
64.10.+h
|
(General theory of equations of state and phase equilibria)
|
|
05.70.-a
|
(Thermodynamics)
|
|
05.70.Ce
|
(Thermodynamic functions and equations of state)
|
|
|
|
|
[1] | Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press) |
[2] | Berry M V and Tabor M 1977 Proc. R. Soc. London Ser. A 356 375 |
[3] | Bohigas O, Giannoni M J, and Schmit C 1984 Phys. Rev. Lett. 52 1 |
[4] | Sá L, Ribeiro P, and Prosen T 2020 Phys. Rev. X 10 021019 |
[5] | Grobe R, Haake F, and Sommers H J 1988 Phys. Rev. Lett. 61 1899 |
[6] | Haake F 2010 Quantum Signatures of Chaos (Berlin: Springer) p 279 |
[7] | Akemann G, Kieburg M, Mielke A, and Prosen T 2019 Phys. Rev. Lett. 123 254101 |
[8] | Grobe R and Haake F 1989 Phys. Rev. Lett. 62 2893 |
[9] | Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142 |
[10] | Kawabata K, Shiozaki K, Ueda M, and Sato M 2019 Phys. Rev. X 9 041015 |
[11] | Hamazaki R, Kawabata K, Kura N, and Ueda M 2020 Phys. Rev. Res. 2 023286 |
[12] | Xu J and Li Y 2019 Chin. Phys. Lett. 36 027201 |
[13] | Li J, Prosen T, and Chan A 2021 Phys. Rev. Lett. 127 170602 |
[14] | Chan A, Shivam S, Huse D A, and De Luca A 2022 Nat. Commun. 13 7484 |
[15] | Shivam S, De Luca A, Huse D A, and Chan A 2023 Phys. Rev. Lett. 130 140403 |
[16] | Dağ C B, Mistakidis S I, Chan A, and Sadeghpour H R 2023 Nat. Phys. 6 136 |
[17] | Li J C, Yan S, Prosen T, and Chan A 2024 arXiv:2405.01641 [cond-mat.stat-mech] |
[18] | Deutsch J M 1991 Phys. Rev. A 43 2046 |
[19] | Srednicki M 1994 Phys. Rev. E 50 888 |
[20] | Srednicki M 1999 J. Phys. A 32 1163 |
[21] | Roy S S, Bandyopadhyay S, de Almeida R C, and Hauke P 2023 arXiv:2309.00049 [quant-ph] |
[22] | Cipolloni G and Kudler-Flam J 2024 Phys. Rev. B 109 L020201 |
[23] | Du Q, Cao K, and Kou S P 2022 Phys. Rev. A 106 032206 |
[24] | Cao K, Du Q, and Kou S P 2023 Phys. Rev. B 108 165420 |
[25] | Cao K and Kou S P 2023 Phys. Rev. Res. 5 033196 |
[26] | Albash T, Boixo S, Lidar D A, and Zanardi P 2012 New J. Phys. 14 123016 |
[27] | Mai P Z and Yin S 2013 arXiv:1303.3366 [cond-mat.stat-mech] |
[28] | Fukuhara T, Kantian A, Endres M et al. 2013 Nat. Phys. 9 235 |
[29] | Magaña-Loaiza O S, Mirhosseini M, Rodenburg B, and Boyd R W 2014 Phys. Rev. Lett. 112 200401 |
[30] | Ashida Y, Furukawa S, and Ueda M 2017 Nat. Commun. 8 15791 |
[31] | Minganti F, Miranowicz A, Chhajlany R W, Arkhipov I I, and Nori F 2020 Phys. Rev. A 101 062112 |
[32] | Naghiloo M, Abbasi M, Joglekar Y N, and Murch K W 2019 Nat. Phys. 15 1232 |
[33] | Chen W, Abbasi M, Joglekar Y N, and Murch K W 2021 Phys. Rev. Lett. 127 140504 |
[34] | Fukuhara T, Hild S, Zeiher J, Schauß P, Bloch I, Endres M, and Gross C 2015 Phys. Rev. Lett. 115 035302 |
[35] | Gaspard P and Nagaoka M 1999 J. Chem. Phys. 111 5676 |
[36] | de Vega I and Alonso D 2017 Rev. Mod. Phys. 89 015001 |
[37] | Fleming C, Cummings N I, Anastopoulos C, and Hu B L 2010 J. Phys. A 43 405304 |
[38] | Pauli W 1928 Über das H-Theorem vom Anwachsen der Entropie vom Standpunkt der neuen Quantenmechanik, in Probleme der modernen Physik: Arnold Sommerfeld zum 60. Geburtstage gewidmet von seinen Schülern (Leipzig: Hirzel) pp 30–45 |
[39] | Bulnes Cuetara G, Esposito M, and Schaller G 2016 Entropy 18 447 |
[40] | Timm C 2009 Phys. Rev. E 80 021140 |
[41] | Deguchi T and Ghosh P K 2009 J. Phys. A 42 475208 |
[42] | Yang F, Wang H, Yang M L, Guo C X, Wang X R, Sun G Y, and Kou S P 2022 New J. Phys. 24 043046 |
[43] | Laine E M, Breuer H P, Piilo J, Li C F, and Guo G C 2012 Phys. Rev. Lett. 108 210402 |
[44] | Breuer H P, Laine E M, Piilo J, and Vacchini B 2016 Rev. Mod. Phys. 88 021002 |
[45] | Rajput A, Roggero A, and Wiebe N 2022 Quantum 6 780 |
[46] | von Neumann J 2018 Mathematical Foundations of Quantum Mechanics: New Edition (Princeton: Princeton University Press) |
[47] | Kardar M 2007 Statistical Physics of Particles (Cambridge: Cambridge University Press) |
[48] | Kawabata K, Numasawa T, and Ryu S 2023 Phys. Rev. X 13 021007 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|