CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Mott Gap Filling by Doping Electrons through Depositing One Sub-Monolayer Thin Film of Rb on Ca$_{2}$CuO$_{2}$Cl$_{2}$ |
Han Li, Zhaohui Wang, Shengtai Fan, Huazhou Li, Huan Yang*, and Haihu Wen* |
National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
Cite this article: |
Han Li, Zhaohui Wang, Shengtai Fan et al 2024 Chin. Phys. Lett. 41 057402 |
|
|
Abstract Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electronic state starting from the Mott insulator, we dose the surface of the parent phase Ca$_{2}$CuO$_{2}$Cl$_{2}$ by depositing Rb atoms, which are supposed to donate electrons to the CuO$_{2}$ planes underneath. We successfully achieved the Rb sub-monolayer thin films in forming the square lattice. The scanning tunneling microscopy or spectroscopy measurements on the surface show that the Fermi energy is pinned within the Mott gap but close to the edge of the charge transfer band. In addition, an in-gap state appears at the bottom of the upper Hubbard band (UHB), and the Mott gap will be significantly diminished. Combined with the Cl defect and the Rb adatom/cluster results, the electron doping is likely to increase the spectra weight of the UHB for the double occupancy. Our results provide information to understand the electron doping to the parent compound of cuprates.
|
|
Received: 26 February 2024
Published: 03 May 2024
|
|
|
|
|
|
[1] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[2] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 |
[3] | Anderson P W 1959 Phys. Rev. 115 2 |
[4] | Anderson P W 1987 Science 235 1196 |
[5] | Hirsch J E 1985 Phys. Rev. B 31 4403 |
[6] | Chao K A, Spałek J, and Oleś A M 1978 Phys. Rev. B 18 3453 |
[7] | Zaanen J, Sawatzky G A, and Allen J W 1985 Phys. Rev. Lett. 55 418 |
[8] | Emery V J 1987 Phys. Rev. Lett. 58 2794 |
[9] | Anderson P W 1950 Phys. Rev. 79 350 |
[10] | Alloul H, Rullier-Albenque F, Vignolle B, Colson D, and Forget A 2010 Europhys. Lett. 91 37005 |
[11] | Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, and Uchida S 1995 Nature 375 561 |
[12] | Ghiringhelli G, Le Tacon M, Minola M et al. 2012 Science 337 821 |
[13] | Eskes H, Meinders M B J, and Sawatzky G A 1991 Phys. Rev. Lett. 67 1035 |
[14] | van Veenendaal M A, Sawatzky G A, and Groen W A 1994 Phys. Rev. B 49 1407 |
[15] | Armitage N P, Fournier P, and Greene R L 2010 Rev. Mod. Phys. 82 2421 |
[16] | Greene R L, Mandal P R, Poniatowski N R, and Sarkar T 2020 Annu. Rev. Condens. Matter Phys. 11 213 |
[17] | Chu C W, Deng L Z, and Lv B 2015 Physica C 514 290 |
[18] | Weber C, Haule K, and Kotliar G 2010 Nat. Phys. 6 574 |
[19] | Pavarini E, Dasgupta I, Saha-Dasgupta T, Jepsen O, and Andersen O K 2001 Phys. Rev. Lett. 87 047003 |
[20] | de Mello E V L 2012 Europhys. Lett. 99 37003 |
[21] | Li H Z, Li H, Wang Z H et al. 2023 npj Quantum Mater. 8 18 |
[22] | Kohsaka Y, Azuma M, Yamada I et al. 2002 J. Am. Chem. Soc. 124 12275 |
[23] | Hanaguri T, Lupien C, Kohsaka Y et al. 2004 Nature 430 1001 |
[24] | Hanaguri T, Kohsaka Y, Davis J C et al. 2007 Nat. Phys. 3 865 |
[25] | Shen K M, Ronning F, Lu D H et al. 2005 Science 307 901 |
[26] | Hu C, Zhao J F, Gao Q et al. 2021 Nat. Commun. 12 1356 |
[27] | Hiroi Z, Kobayashi N, and Takano M 1994 Nature 371 139 |
[28] | Waku K, Katsufuji T, Kohsaka Y et al. 2004 Phys. Rev. B 70 134501 |
[29] | Ye C, Cai P, Yu R Z et al. 2013 Nat. Commun. 4 1365 |
[30] | Ronning F, Kim C, Feng D L et al. 1998 Science 282 2067 |
[31] | Hu C, Zhao J F, Ding Y et al. 2018 Chin. Phys. Lett. 35 067403 |
[32] | Pothuizen J J M, Eder R, Hien N T et al. 1997 Phys. Rev. Lett. 78 717 |
[33] | Kumagai Y, Oba F, Yamada I, Azuma M, and Tanaka I 2009 Phys. Rev. B 80 085120 |
[34] | He C P, Yu S L, Xiang T, and Li J X 2022 Chin. Phys. Lett. 39 057401 |
[35] | Leong W H, Yu S L, Xiang T, and Li J X 2014 Phys. Rev. B 90 245102 |
[36] | Song C L, Zhang H M, Zhong Y et al. 2016 Phys. Rev. Lett. 116 157001 |
[37] | Yuan Y H, Fan X M, Wang X T et al. 2021 Nat. Commun. 12 2196 |
[38] | Ren M Q, Yan Y J, Niu X H et al. 2017 Sci. Adv. 3 e1603238 |
[39] | Gavioli L, Padovani M, Spiller E, Sancrotti M, and Betti M G 2003 Appl. Surf. Sci. 212 47 |
[40] | Ferbel L, Veronesi S, and Heun S 2003 Appl. Surf. Sci. 718 122011 |
[41] | Harima N, Matsuno J, Fujimori A et al. 2001 Phys. Rev. B 64 220507 |
[42] | Armitage N P, Ronning F, Lu D H et al. 2002 Phys. Rev. Lett. 88 257001 |
[43] | Taguchi M, Chainani A, Horiba K et al. 2005 Phys. Rev. Lett. 95 177002 |
[44] | Allen J W, Olson C G, Maple M B et al. 1990 Phys. Rev. Lett. 64 595 |
[45] | Ino A, Kim C, Nakamura M et al. 2000 Phys. Rev. B 62 4137 |
[46] | Li H W, Ye S S, Zhao J F, Jin C Q, and Wang Y Y 2021 Sci. Bull. 66 1395 |
[47] | Phillips P 2010 Rev. Mod. Phys. 82 1719 |
[48] | Wang Z Y and Shu D J 2021 J. Phys. Chem. C 125 19259 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|