Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047501    DOI: 10.1088/0256-307X/41/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Orbital-Ordering Driven Simultaneous Tunability of Magnetism and Electric Polarization in Strained Monolayer VCl$_{3}$
Deping Guo1,2†, Cong Wang1,2†, Lvjin Wang1,2, Yunhao Lu3, Hua Wu4, Yanning Zhang5, and Wei Ji1,2,5*
1Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
2Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
3Zhejiang Province Key Laboratory of Quantum Technology and Device, State Key Laboratory of Silicon Materials, Department of Physics, Zhejiang University, Hangzhou 310027, China
4Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
5Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Cite this article:   
Deping Guo, Cong Wang, Lvjin Wang et al  2024 Chin. Phys. Lett. 41 047501
Download: PDF(1690KB)   PDF(mobile)(1714KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit, indicating a considerable potential to advance spintronic applications. Theoretical predictions thus far have not ascertained whether monolayer VCl$_{3}$ is a ferromagnetic (FM) or anti-FM monolayer; this also remains to be experimentally verified. We theoretically investigate the influence of potential factors, including $C_{3}$ symmetry breaking, orbital ordering, epitaxial strain, and charge doping, on the magnetic ground state. Utilizing first-principles calculations, we predict a collinear type-III FM ground state in monolayer VCl$_{3}$ with a broken $C_{3}$ symmetry, wherein only the former two of three $t_{\rm 2g}$ orbitals ($a_{\rm 1g}$, $e^{\pi}_{\rm g2}$ and $e^{\pi}_{\rm g1}$) are occupied. The atomic layer thickness and bond angles of monolayer VCl$_{3}$ undergo abrupt changes driven by an orbital ordering switch, resulting in concomitant structural and magnetic phase transitions. Introducing doping to the underlying Cl atoms of monolayer VCl$_{3}$ without $C_{3}$ symmetry simultaneously induces in- and out-of-plane polarizations. This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain. The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl$_{3}$.
Received: 30 January 2024      Published: 11 April 2024
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
  75.50.Pp (Magnetic semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Deping Guo
Cong Wang
Lvjin Wang
Yunhao Lu
Hua Wu
Yanning Zhang
and Wei Ji
[1] Mak K F, Shan J, and Ralph D C 2019 Nat. Rev. Phys. 1 646
[2] Gibertini M, Koperski M, Morpurgo A F, and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[3] Li H, Ruan S C, and Zeng Y J 2019 Adv. Mater. 31 1900065
[4] Qi Y P, Sadi M A, Hu D, Zheng M, Wu Z P, Jiang Y C, and Chen Y P 2023 Adv. Mater. 35 2205714
[5] Xu Z M, Li Y, Xu Y, and Duan W H 2020 Chin. Sci. Bull. 66 535
[6] Zhang S Q, Xu R Z, Luo N N, and Zou X L 2021 Nanoscale 13 1398
[7] Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, and Maletinsky P 2019 Science 364 973
[8] Soumyanarayanan A, Reyren N, Fert A, and Panagopoulos C 2016 Nature 539 509
[9] Fang Y M, Wu S Q, Zhu Z Z, and Guo G Y 2018 Phys. Rev. B 98 125416
[10] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94
[11] Miao N H, Xu B, Zhu L G, Zhou J, and Sun Z M 2018 J. Am. Chem. Soc. 140 2417
[12] Lee K, Dismukes A H, Telford E J, Wiscons R A, Wang J, Xu X, Nuckolls C, Dean C R, Roy X, and Zhu X 2021 Nano Lett. 21 3511
[13] Telford E J, Dismukes A H, Lee K, Cheng M, Wieteska A, Bartholomew A K, Chen Y S, Xu X, Pasupathy A N, Zhu X, Dean C R, and Roy X 2020 Adv. Mater. 32 2003240
[14] Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X Q, Du J, He L, Zhang R, Bian G, and Xu Y B 2021 Nat. Commun. 12 2492
[15] Li B, Wan Z, Wang C, Chen P, Huang B W, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Ye Y, Huang Y, Xu X, Duan X D, Ji W, and Duan X F 2021 Nat. Mater. 20 818
[16] Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z Y, and Ji W 2019 Phys. Rev. B 99 144401
[17] Huang B V, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544
[18] Wang C, Zhou X Y, Pan Y H, Qiao J S, Kong X H, Kaun C C, and Ji W 2018 Phys. Rev. B 97 245409
[19] Wu L L, Zhou L W, Zhou X Y, Wang C, and Ji W 2022 Phys. Rev. B 106 L081401
[20] Huang C X, Wu F, Yu S L, Jena P, and Kan E J 2020 Phys. Chem. Chem. Phys. 22 512
[21] Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, and Huang B B 2012 ACS Nano 6 1695
[22] Jiang S W, Li L Z, Wang Z F, Mak K F, and Shan J 2018 Nat. Nanotechnol. 13 549
[23] Yang K, Fan F R, Wang H B, Khomskii D I, and Wu H 2020 Phys. Rev. B 101 100402
[24] Liu L, Yang K, Wang G Y, and Wu H 2020 J. Mater. Chem. C 8 14782
[25] Nguyen T P T, Yamauchi K, Oguchi T, Amoroso D, and Picozzi S 2021 Phys. Rev. B 104 014414
[26] He J J, Ma S Y, Lyu P, and Nachtigall P 2016 J. Mater. Chem. C 4 2518
[27] Zhou Y G, Lu H F, Zu X T, and Gao F 2016 Sci. Rep. 6 19407
[28] Zhao S, Wan W, Ge Y, and Liu Y 2021 Ann. Phys. (Berlin) 533 2100064
[29] Fiebig M, Lottermoser T, Meier D, and Trassin M 2016 Nat. Rev. Mater. 1 16046
[30] Xu M L, Huang C X, Li Y W, Liu S Y, Zhong X, Jena P, Kan E J, and Wang Y C 2020 Phys. Rev. Lett. 124 067602
[31] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Blöchl P E 1994 Phys. Rev. B 50 17953
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104
[37] Anisimov V I, Aryasetiawan F, and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767
[38] Yekta Y, Hadipour H, Şaşıoǧlu E, Friedrich C, Jafari S A, Blügel S, and Mertig I 2021 Phys. Rev. Mater. 5 034001
[39] Ji W, Lu Z Y, and Gao H J 2006 Phys. Rev. Lett. 97 246101
[40] Köhler L and Kresse G 2004 Phys. Rev. B 70 165405
[41] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[42] Yang L, Gao Y X, Wu M H, and Jena P 2022 Phys. Rev. B 105 094101
[43] Hu T and Kan E J 2019 WIREs: Comput. Mol. Sci. 9 e1409
[44] Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, and Duan C G 2019 Adv. Electron. Mater. 6 1900818
Related articles from Frontiers Journals
[1] Han-Xu Zhang, Sen-Yin Zhu, Jin Zhan, Xian-Jie Wang, Yi Wang, Tai Yao, N. I. Mezin, and Bo Song. Observation of Enhanced Faraday Effect in Eu-Doped Ce:YIG Thin Films[J]. Chin. Phys. Lett., 2023, 40(12): 047501
[2] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 047501
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 047501
[4] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 047501
[5] Matthias Batzill. Search for 2D Ferromagnets: Molecular Beam Epitaxy is a Critical Tool[J]. Chin. Phys. Lett., 2020, 37(8): 047501
[6] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 047501
[7] Qian-Qian Yuan, Zhaopeng Guo, Zhi-Qiang Shi, Hui Zhao, Zhen-Yu Jia, Qianjin Wang, Jian Sun, Di Wu, and Shao-Chun Li. Ferromagnetic MnSn Monolayer Epitaxially Grown on Silicon Substrate[J]. Chin. Phys. Lett., 2020, 37(7): 047501
[8] Shan Li, Jun Lu, Lian-Jun Wen, Dong Pan, Hai-Long Wang, Da-Hai Wei, and Jian-Hua Zhao. Unusual Anomalous Hall Effect in a Co$_{2}$MnSi/MnGa/Pt Trilayer[J]. Chin. Phys. Lett., 2020, 37(7): 047501
[9] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 047501
[10] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 047501
[11] Yong-Le Lou, Yu-Ming Zhang, Hui Guo, Da-Qing Xu, Yi-Men Zhang. Effects of Fe-Oxide and Mg Layer Insertion on Tunneling Magnetoresistance Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2016, 33(11): 047501
[12] Shi-Zhu Qiao, Quan-Nian Ren, Run-Run Hao, Hai Zhong, Yun Kang, Shi-Shou Kang, Yu-Feng Qin, Shu-Yun Yu, Guang-Bing Han, Shi-Shen Yan, Liang-Mo Mei. Broad-Band FMR Linewidth of Co2MnSi Thin Films with Low Damping Factor: The Role of Two-Magnon Scattering[J]. Chin. Phys. Lett., 2016, 33(04): 047501
[13] Jian-Hui Yuan, Ni Chen, Hua Mo, Yan Zhang, Zhi-Hai Zhang. Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction[J]. Chin. Phys. Lett., 2016, 33(03): 047501
[14] ZHOU Dong, ZHANG Yin-Feng, MA Xiao-Bai, LIU Shun-Quan, HAN Jing-Zhi, ZHU Ming-Gang, WANG Chang-Sheng, YANG Jin-Bo. Preparation of Highly Textured Bi and MnBi Films by the Pulsed Laser Deposition Method[J]. Chin. Phys. Lett., 2015, 32(12): 047501
[15] JIANG Feng-Xian, ZHAO Ye, ZHOU Guo-Wei, ZHANG Jun, FAN Jiu-Ping, XU Xiao-Hong. Structure and Magnetic Properties of the γ'-Fe4N Films on Cu Underlayers[J]. Chin. Phys. Lett., 2015, 32(08): 047501
Viewed
Full text


Abstract