CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Orbital-Ordering Driven Simultaneous Tunability of Magnetism and Electric Polarization in Strained Monolayer VCl$_{3}$ |
Deping Guo1,2†, Cong Wang1,2†, Lvjin Wang1,2, Yunhao Lu3, Hua Wu4, Yanning Zhang5, and Wei Ji1,2,5* |
1Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China 2Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China 3Zhejiang Province Key Laboratory of Quantum Technology and Device, State Key Laboratory of Silicon Materials, Department of Physics, Zhejiang University, Hangzhou 310027, China 4Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China 5Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
|
|
Cite this article: |
Deping Guo, Cong Wang, Lvjin Wang et al 2024 Chin. Phys. Lett. 41 047501 |
|
|
Abstract Two-dimensional (2D) van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit, indicating a considerable potential to advance spintronic applications. Theoretical predictions thus far have not ascertained whether monolayer VCl$_{3}$ is a ferromagnetic (FM) or anti-FM monolayer; this also remains to be experimentally verified. We theoretically investigate the influence of potential factors, including $C_{3}$ symmetry breaking, orbital ordering, epitaxial strain, and charge doping, on the magnetic ground state. Utilizing first-principles calculations, we predict a collinear type-III FM ground state in monolayer VCl$_{3}$ with a broken $C_{3}$ symmetry, wherein only the former two of three $t_{\rm 2g}$ orbitals ($a_{\rm 1g}$, $e^{\pi}_{\rm g2}$ and $e^{\pi}_{\rm g1}$) are occupied. The atomic layer thickness and bond angles of monolayer VCl$_{3}$ undergo abrupt changes driven by an orbital ordering switch, resulting in concomitant structural and magnetic phase transitions. Introducing doping to the underlying Cl atoms of monolayer VCl$_{3}$ without $C_{3}$ symmetry simultaneously induces in- and out-of-plane polarizations. This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain. The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl$_{3}$.
|
|
Received: 30 January 2024
Published: 11 April 2024
|
|
PACS: |
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.25.Dk
|
(Orbital, charge, and other orders, including coupling of these orders)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
|
|
|
[1] | Mak K F, Shan J, and Ralph D C 2019 Nat. Rev. Phys. 1 646 |
[2] | Gibertini M, Koperski M, Morpurgo A F, and Novoselov K S 2019 Nat. Nanotechnol. 14 408 |
[3] | Li H, Ruan S C, and Zeng Y J 2019 Adv. Mater. 31 1900065 |
[4] | Qi Y P, Sadi M A, Hu D, Zheng M, Wu Z P, Jiang Y C, and Chen Y P 2023 Adv. Mater. 35 2205714 |
[5] | Xu Z M, Li Y, Xu Y, and Duan W H 2020 Chin. Sci. Bull. 66 535 |
[6] | Zhang S Q, Xu R Z, Luo N N, and Zou X L 2021 Nanoscale 13 1398 |
[7] | Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, and Maletinsky P 2019 Science 364 973 |
[8] | Soumyanarayanan A, Reyren N, Fert A, and Panagopoulos C 2016 Nature 539 509 |
[9] | Fang Y M, Wu S Q, Zhu Z Z, and Guo G Y 2018 Phys. Rev. B 98 125416 |
[10] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 |
[11] | Miao N H, Xu B, Zhu L G, Zhou J, and Sun Z M 2018 J. Am. Chem. Soc. 140 2417 |
[12] | Lee K, Dismukes A H, Telford E J, Wiscons R A, Wang J, Xu X, Nuckolls C, Dean C R, Roy X, and Zhu X 2021 Nano Lett. 21 3511 |
[13] | Telford E J, Dismukes A H, Lee K, Cheng M, Wieteska A, Bartholomew A K, Chen Y S, Xu X, Pasupathy A N, Zhu X, Dean C R, and Roy X 2020 Adv. Mater. 32 2003240 |
[14] | Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X Q, Du J, He L, Zhang R, Bian G, and Xu Y B 2021 Nat. Commun. 12 2492 |
[15] | Li B, Wan Z, Wang C, Chen P, Huang B W, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Ye Y, Huang Y, Xu X, Duan X D, Ji W, and Duan X F 2021 Nat. Mater. 20 818 |
[16] | Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z Y, and Ji W 2019 Phys. Rev. B 99 144401 |
[17] | Huang B V, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544 |
[18] | Wang C, Zhou X Y, Pan Y H, Qiao J S, Kong X H, Kaun C C, and Ji W 2018 Phys. Rev. B 97 245409 |
[19] | Wu L L, Zhou L W, Zhou X Y, Wang C, and Ji W 2022 Phys. Rev. B 106 L081401 |
[20] | Huang C X, Wu F, Yu S L, Jena P, and Kan E J 2020 Phys. Chem. Chem. Phys. 22 512 |
[21] | Ma Y D, Dai Y, Guo M, Niu C W, Zhu Y T, and Huang B B 2012 ACS Nano 6 1695 |
[22] | Jiang S W, Li L Z, Wang Z F, Mak K F, and Shan J 2018 Nat. Nanotechnol. 13 549 |
[23] | Yang K, Fan F R, Wang H B, Khomskii D I, and Wu H 2020 Phys. Rev. B 101 100402 |
[24] | Liu L, Yang K, Wang G Y, and Wu H 2020 J. Mater. Chem. C 8 14782 |
[25] | Nguyen T P T, Yamauchi K, Oguchi T, Amoroso D, and Picozzi S 2021 Phys. Rev. B 104 014414 |
[26] | He J J, Ma S Y, Lyu P, and Nachtigall P 2016 J. Mater. Chem. C 4 2518 |
[27] | Zhou Y G, Lu H F, Zu X T, and Gao F 2016 Sci. Rep. 6 19407 |
[28] | Zhao S, Wan W, Ge Y, and Liu Y 2021 Ann. Phys. (Berlin) 533 2100064 |
[29] | Fiebig M, Lottermoser T, Meier D, and Trassin M 2016 Nat. Rev. Mater. 1 16046 |
[30] | Xu M L, Huang C X, Li Y W, Liu S Y, Zhong X, Jena P, Kan E J, and Wang Y C 2020 Phys. Rev. Lett. 124 067602 |
[31] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[32] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[33] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[34] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[35] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[36] | Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104 |
[37] | Anisimov V I, Aryasetiawan F, and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767 |
[38] | Yekta Y, Hadipour H, Şaşıoǧlu E, Friedrich C, Jafari S A, Blügel S, and Mertig I 2021 Phys. Rev. Mater. 5 034001 |
[39] | Ji W, Lu Z Y, and Gao H J 2006 Phys. Rev. Lett. 97 246101 |
[40] | Köhler L and Kresse G 2004 Phys. Rev. B 70 165405 |
[41] | King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651 |
[42] | Yang L, Gao Y X, Wu M H, and Jena P 2022 Phys. Rev. B 105 094101 |
[43] | Hu T and Kan E J 2019 WIREs: Comput. Mol. Sci. 9 e1409 |
[44] | Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, and Duan C G 2019 Adv. Electron. Mater. 6 1900818 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|