CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Evolution of Superconducting-Transition Temperature with Superfluid Density and Conductivity in Pressurized Cuprate Superconductors |
Jinyu Zhao1,4†, Shu Cai2†, Yiwen Chen1,4†, Genda Gu3, Hongtao Yan1, Jing Guo1, Jinyu Han1,4, Pengyu Wang1,4, Yazhou Zhou1, Yanchun Li5, Xiaodong Li5, Zhian Ren1, Qi Wu1, Xingjiang Zhou1,4, Yang Ding2, Tao Xiang1.4,6, Ho-kwang Mao2, and Liling Sun1,2,4* |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China 3Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, NY 11973-5000, USA 4University of Chinese Academy of Sciences, Beijing 100190, China 5Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China 6Beijing Academy of Quantum Information Sciences, Beijing 100193, China
|
|
Cite this article: |
Jinyu Zhao, Shu Cai, Yiwen Chen et al 2024 Chin. Phys. Lett. 41 047401 |
|
|
Abstract What factors fundamentally determine the value of superconducting transition temperature $T_{\rm c}$ in high temperature superconductors has been the subject of intense debate. Following the establishment of an empirical law known as Homes' law, there is a growing consensus in the community that the $T_{\rm c}$ value of the cuprate superconductors is closely linked to the superfluid density ($\rho_{\rm s}$) of its ground state and the conductivity ($\sigma $) of its normal state. However, all the data supporting this empirical law ($\rho_{\rm s} = A\sigma T_{\rm c}$) have been obtained from the ambient-pressure superconductors. In this study, we present the first high-pressure results about the connection of the quantities of $\rho_{\rm s}$ and $\sigma $ with $T_{\rm c}$, through the studies on the Bi$_{1.74}$Pb$_{0.38}$Sr$_{1.88}$CuO$_{6+\delta }$ and Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta }$, in which the value of their high-pressure resistivity ($\rho =1/\sigma $) is achieved by adopting our newly established method, while the quantity of $\rho_{\rm s}$ is extracted using Homes' law. We highlight that the $T_{\rm c}$ values are strongly linked to the joint response factors of magnetic field and electric field, i.e., $\rho_{\rm s}$ and $\sigma $, respectively, implying that the physics determining $T_{\rm c} $ is governed by the intrinsic electromagnetic fields of the system.
|
|
Received: 01 March 2024
Editors' Suggestion
Published: 22 April 2024
|
|
|
|
|
|
[1] | Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 |
[2] | Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908 |
[3] | Chu C W, Deng L Z, and Lv B 2015 Physica C 514 290 |
[4] | Schilling A, Cantoni M, Guo J D, and Ott H R 1993 Nature 363 56 |
[5] | Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, and Mao H K 1994 Phys. Rev. B 50 4260 |
[6] | Dagotto E 1994 Rev. Mod. Phys. 66 763 |
[7] | Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K, and Giapintzakis J 1996 Nature 382 51 |
[8] | Orenstein J and Millis A J 2000 Science 288 468 |
[9] | Norman M R and Pépin C 2003 Rep. Prog. Phys. 66 1547 |
[10] | Hussey N E, Abdel-Jawad M, Carrington A, Mackenzie A P, and Balicas L 2003 Nature 425 814 |
[11] | Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N, and Timusk T 2004 Nature 430 539 |
[12] | Zaanen J 2004 Nature 430 512 |
[13] | Coleman P and Schofield A J 2005 Nature 433 226 |
[14] | Zaanen J 2006 Nat. Phys. 2 138 |
[15] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[16] | Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K, and Hemley R J 2010 Nature 466 950 |
[17] | Wu J, Pelleg O, Logvenov G, Bollinger A T, Sun Y J, Boebinger G S, Vanević M, Radović Z, and Božović I 2013 Nat. Mater. 12 877 |
[18] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 |
[19] | Vishik I M 2018 Rep. Prog. Phys. 81 062501 |
[20] | Zaanen J 2016 Nature 536 282 |
[21] | Božović I, He X, Wu J, and Bollinger A T 2016 Nature 536 309 |
[22] | Zaanen J 2019 SciPost Phys. 6 061 |
[23] | Proust C and Taillefer L 2019 Annu. Rev. Condens. Matter Phys. 10 409 |
[24] | Deng L, Zheng Y, Wu Z, Huyan S, Wu H C, Nie Y, Cho K, and Chu C W 2019 Proc. Natl. Acad. Sci. USA 116 2004 |
[25] | Greene R L, Mandal P R, Poniatowski N R, and Sarkar T 2020 Annu. Rev. Condens. Matter Phys. 11 213 |
[26] | Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J, and Yu X H 1989 Phys. Rev. Lett. 62 2317 |
[27] | Pimenov A, Loidl A, Schey B, Stritzker B, Jakob G, Adrian H, Pronin A V, and Goncharov Y G 1999 Europhys. Lett. 48 73 |
[28] | Bernhard C, Tallon J L, Blasius T, Golnik A, and Niedermayer C 2001 Phys. Rev. Lett. 86 1614 |
[29] | Sun L L, Wu Q, Cai S, Ding Y, and Mao H K 2024 arXiv:2402.16257 [cond-mat.str-el] |
[30] | Triscone G, Chae M S, de Andrade M C, and Maple M B 1997 Physica C 290 188 |
[31] | Hwang J, Timusk T, and Gu G D 2007 J. Phys.: Condens. Matter 19 125208 |
[32] | Chakravarty S, Kee H Y, and Völker K 2004 Nature 428 53 |
[33] | Wu J B, Pei M X, and Wang Q H 2005 Phys. Rev. B 71 172507 |
[34] | Zaleski T A and Kopeć T K 2005 Phys. Rev. B 71 014519 |
[35] | Xiang T and Wu C J 2022 D-Wave Superconductivity (Cambridge: Cambridge University Press), chap 9, pp 204–239 |
[36] | Zhou Y Z, Guo J, Cai S, Zhao J Y, Gu G D, Lin C T, Yan H T, Huang C, Yang C L, Long S J, Gong Y, Li Y C, Li X D, Wu Q, Hu J P, Zhou X J, Xiang T, and Sun L L 2022 Nat. Phys. 18 406 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|