Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047301    DOI: 10.1088/0256-307X/41/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Interaction between Surface Acoustic Wave and Quantum Hall Effects
Xiao Liu1, Mengmeng Wu1, Renfei Wang1, Xinghao Wang1, Wenfeng Zhang1, Yujiang Dong1, Rui-Rui Du1,2, Yang Liu1,3*, and Xi Lin1,3,4*
1International Center for Quantum Materials, Peking University, Beijing 100871, China
2Center for Excellence, University of Chinese Academy of Sciences, Beijing 100190, China
3Hefei National Laboratory, Hefei 230088, China
4Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
Cite this article:   
Xiao Liu, Mengmeng Wu, Renfei Wang et al  2024 Chin. Phys. Lett. 41 047301
Download: PDF(1541KB)   PDF(mobile)(1556KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Surface acoustic wave (SAW) is a powerful technique for investigating quantum phases appearing in two-dimensional electron systems. The electrons respond to the piezoelectric field of SAW through screening, attenuating its amplitude, and shifting its velocity, which is described by the relaxation model. In this work, we systematically study this interaction using orders of magnitude lower SAW amplitude than those in previous studies. At high magnetic fields, when electrons form highly correlated states such as the quantum Hall effect, we observe an anomalously large attenuation of SAW, while the acoustic speed remains considerably high, inconsistent with the conventional relaxation model. This anomaly exists only when the SAW power is sufficiently low.
Received: 07 February 2024      Express Letter Published: 01 April 2024
PACS:  73.43.-f (Quantum Hall effects)  
  05.60.Gg (Quantum transport)  
  77.65.Dq (Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao Liu
Mengmeng Wu
Renfei Wang
Xinghao Wang
Wenfeng Zhang
Yujiang Dong
Rui-Rui Du
Yang Liu
and Xi Lin
[1] Klitzing K v, Dorda G, and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Tsui D C, Stormer H L, and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[3] Jain J K 2007 CompositeFermion (Cambridge: Cambridge University Press)
[4] Prange R E and Girvin S M 1990 The Quantum Hall Effect (New York: Springer)
[5] Wigner E 1934 Phys. Rev. 46 1002
[6]Lozovik Y E and Yudson V 1975 ZhETF Pisma Redaktsiiu 22 26
[7] Lam P K and Girvin S M 1984 Phys. Rev. B 30 473
[8] Levesque D, Weis J J, and MacDonald A H 1984 Phys. Rev. B 30 1056
[9] Willett R L, Stormer H L, Tsui D C, Pfeiffer L N, West K W, and Baldwin K W 1988 Phys. Rev. B 38 7881
[10] Zhu X J and Louie S G 1995 Phys. Rev. B 52 5863
[11] Koulakov A A, Fogler M M, and Shklovskii B I 1996 Phys. Rev. Lett. 76 499
[12] Du R R, Tsui D C, Stormer H L, Pfeiffer L N, Baldwin K W, and West K W 1999 Solid State Commun. 109 389
[13] Lilly M P, Cooper K B, Eisenstein J P, Pfeiffer L N, and West K W 1999 Phys. Rev. Lett. 82 394
[14] Engel L W, Shahar D, Kurdak Ç, and Tsui D C 1993 Phys. Rev. Lett. 71 2638
[15] Chen Y, Lewis R M, Engel L W, Tsui D C, Ye P D, Pfeiffer L N, and West K W 2003 Phys. Rev. Lett. 91 016801
[16] Lewis R M, Chen Y P, Engel L W, Tsui D C, Pfeiffer L N, and West K W 2005 Phys. Rev. B 71 081301
[17] Zhu H, Sambandamurthy G, Chen Y P, Jiang P, Engel L W, Tsui D C, Pfeiffer L N, and West K W 2010 Phys. Rev. Lett. 104 226801
[18] Hatke A, Liu Y, Engel L, Shayegan M, Pfeiffer L, West K, and Baldwin K 2015 Nat. Commun. 6 7071
[19] Hatke A T, Liu Y, Engel L W, Pfeiffer L N, West K W, Baldwin K W, and Shayegan M 2017 Phys. Rev. B 95 045417
[20] Wixforth A, Kotthaus J P, and Weimann G 1986 Phys. Rev. Lett. 56 2104
[21] Wixforth A, Scriba J, Wassermeier M, Kotthaus J P, Weimann G, and Schlapp W 1989 Phys. Rev. B 40 7874
[22] Willett R L, Paalanen M A, Ruel R R, West K W, Pfeiffer L N, and Bishop D J 1990 Phys. Rev. Lett. 65 112
[23] Paalanen M A, Willett R L, Littlewood P B, Ruel R R, West K W, Pfeiffer L N, and Bishop D J 1992 Phys. Rev. B 45 11342
[24] Willett R L, Ruel R R, West K W, and Pfeiffer L N 1993 Phys. Rev. Lett. 71 3846
[25] Willett R L, West K W, and Pfeiffer L N 2002 Phys. Rev. Lett. 88 066801
[26] Friess B, Peng Y, Rosenow B, von Oppen F, Umansky V, von Klitzing K, and Smet J H 2017 Nat. Phys. 13 1124
[27] Friess B, Umansky V, von Klitzing K, and Smet J H 2018 Phys. Rev. Lett. 120 137603
[28] Friess B, Dmitriev I A, Umansky V, Pfeiffer L, West K, von Klitzing K, and Smet J H 2020 Phys. Rev. Lett. 124 117601
[29] Drichko I L, Smirnov I Y, Suslov A V, and Leadley D R 2011 Phys. Rev. B 83 235318
[30] Drichko I L, Smirnov I Y, Suslov A V, Pfeiffer L N, West K W, and Galperin Y M 2015 Phys. Rev. B 92 205313
[31] Drichko I, Smirnov I Y, Suslov A, Galperin Y, Pfeiffer L, and West K 2017 Low Temp. Phys. 43 86
[32] Wu M M, Liu X, Wang R F, Chung Y J, Gupta A, Baldwin K W, Pfeiffer L, Lin X, and Liu Y 2024 Phys. Rev. Lett. 132 076501
[33] Arikawa T, Hyodo K, Kadoya Y, and Tanaka K 2017 Nat. Phys. 13 688
[34] Haug R J, Klitzing K v, Nicholas R J, Maan J C, and Weimann G 1987 Phys. Rev. B 36 4528
[35] Clark R G, Haynes S R, Suckling A M, Mallett J R, Wright P A, Harris J J, and Foxon C T 1989 Phys. Rev. Lett. 62 1536
[36] Engel L W, Hwang S W, Sajoto T, Tsui D C, and Shayegan M 1992 Phys. Rev. B 45 3418
[37] Du R R, Yeh A S, Stormer H L, Tsui D C, Pfeiffer L N, and West K W 1995 Phys. Rev. Lett. 75 3926
[38] Wang P J, Sun J, Fu H L, Wu Y J, Chen H, Pfeiffer L N, West K W, Xie X C, and Lin X 2020 Phys. Rev. Res. 2 022056
[39] Wang X B, Fu H L, Du L J, Liu X X, Wang P J, Pfeiffer L N, West K W, Du R R, and Lin X 2015 Phys. Rev. B 91 115301
[40] Sun J, Niu J S, Li Y, Liu Y F, Pfeiffer L, West K, Wang P J, and Lin X 2022 Fundam. Res. 2 178
[41] Samkharadze N, Schreiber K A, Gardner G C, Manfra M J, Fradkin E, and Csáthy G A 2016 Nat. Phys. 12 191
[42] Schreiber K A, Samkharadze N, Gardner G C, Lyanda-Geller Y, Manfra M J, Pfeiffer L N, West K W, and Csáthy G A 2018 Nat. Commun. 9 2400
[43] Huang K, Wang P J, Pfeiffer L N, West K W, Baldwin K W, Liu Y, and Lin X 2019 Phys. Rev. Lett. 123 206602
[44] Hutson A and White D L 1962 J. Appl. Phys. 33 40
[45] Bierbaum P 1972 Appl. Phys. Lett. 21 595
[46] Wu M M, Liu X, Wang R F, Lin X, and Liu Y 2024 arXiv:2311.01718 [physics.app-ph]
[47] Zhao L L, Lin W L, Chung Y J, Baldwin K W, Pfeiffer L N, and Liu Y 2022 Chin. Phys. Lett. 39 097301
[48]Recently, Wu et al.[32] revealed an interesting discovery: a noticeable modulation in the SAW velocity appears when varying current through the 2DES.
Related articles from Frontiers Journals
[1] Zhi-Wen Chang, Wei-Chang Hao, Miguel Bustamante, and Xin Liu. Constructing Hopf Insulator from Geometric Perspective of Hopf Invariant[J]. Chin. Phys. Lett., 2024, 41(3): 047301
[2] Xinyi Wan, Xiaodong Fan, Changwei Zhai, Zhenyu Yang, Lilong Hao, Lin Li, Yunfeng Lu, and Changgan Zeng. Contrasting Transport Performance of Electron- and Hole-Doped Epitaxial Graphene for Quantum Resistance Metrology[J]. Chin. Phys. Lett., 2023, 40(10): 047301
[3] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 047301
[4] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 047301
[5] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 047301
[6] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 047301
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 047301
[8] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 047301
[9] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 047301
[10] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 047301
[11] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 047301
[12] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 047301
[13] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 047301
[14] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 047301
[15] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 047301
Viewed
Full text


Abstract