CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tuning Second Chern Number in a Four-Dimensional Topological Insulator by High-Frequency Time-Periodic Driving |
Zheng-Rong Liu1, Rui Chen1*, and Bin Zhou1,2* |
1Department of Physics, Hubei University, Wuhan 430062, China 2Key Laboratory of Intelligent Sensing System and Security of Ministry of Education, Hubei University, Wuhan 430062, China
|
|
Cite this article: |
Zheng-Rong Liu, Rui Chen, and Bin Zhou 2024 Chin. Phys. Lett. 41 047102 |
|
|
Abstract Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions. We investigate the effects of high-frequency time-periodic driving in a four-dimensional (4D) topological insulator, focusing on topological phase transitions at the off-resonant quasienergy gap. The 4D topological insulator hosts gapless three-dimensional boundary states, characterized by the second Chern number $C_{2}$. We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving. This includes transitions from a topological phase with $C_{2}=\pm3$ to another topological phase with $C_{2}=\pm1$, or to a topological phase with an even second Chern number $C_{2}=\pm2$, which is absent in the 4D static system. Finally, the approximation theory in the high-frequency limit further confirms the numerical conclusions.
|
|
Received: 20 January 2024
Editors' Suggestion
Published: 09 April 2024
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
|
|
|
[1] | Klitzing K V, Dorda G, and Pepper M 1980 Phys. Rev. Lett. 45 494 |
[2] | Shen S Q 2017 Topological Insulators (Singapore: Springer) |
[3] | Wang C M, Sun H P, Lu H Z, and Xie X C 2017 Phys. Rev. Lett. 119 136806 |
[4] | Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, and Xiu F 2018 Nature 565 331 |
[5] | Tang F D, Ren Y F, Wang P P, Zhong R D, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z, and Zhang L 2019 Nature 569 537 |
[6] | Chen R, Liu T, Wang C M, Lu H Z, and Xie X C 2021 Phys. Rev. Lett. 127 066801 |
[7] | Qin F, Li S, Du Z Z, Wang C M, Zhang W, Yu D, Lu H Z, and Xie X C 2020 Phys. Rev. Lett. 125 206601 |
[8] | Störmer H L, Eisenstein J P, Gossard A C, Wiegmann W, and Baldwin K 1986 Phys. Rev. Lett. 56 85 |
[9] | Hannahs S T, Brooks J S, Kang W, Chiang L Y, and Chaikin P M 1989 Phys. Rev. Lett. 63 1988 |
[10] | Montambaux G and Kohmoto M 1990 Phys. Rev. B 41 11417 |
[11] | Kohmoto M, Halperin B I, and Wu Y S 1992 Phys. Rev. B 45 13488 |
[12] | Hill S, Uji S, Takashita M, Terakura C, Terashima T, Aoki H, Brooks J S, Fisk Z, and Sarrao J 1998 Phys. Rev. B 58 10778 |
[13] | Koshino M, Aoki H, Kuroki K, Kagoshima S, and Osada T 2001 Phys. Rev. Lett. 86 1062 |
[14] | Bernevig B A, Hughes T L, Raghu S, and Arovas D P 2007 Phys. Rev. Lett. 99 146804 |
[15] | Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, Nakao H, Murakami Y, Arima T H, Tokura Y, and Ishiwata S 2016 Sci. Adv. 2 e1501117 |
[16] | Jin Y J, Wang R, Xia B W, Zheng B B, and Xu H 2018 Phys. Rev. B 98 081101 |
[17] | Li H L, Liu H W, Jiang H, and Xie X C 2020 Phys. Rev. Lett. 125 036602 |
[18] | Cheng S G, Jiang H, Sun Q F, and Xie X C 2020 Phys. Rev. B 102 075304 |
[19] | Wang P, Ren Y, Tang F, Wang P P, Hou T, Zeng H L, Zhang L Y, and Qiao Z H 2020 Phys. Rev. B 101 161201 |
[20] | Li S, Wang C M, Du Z Z, Qin F, Lu H Z, and Xie X C 2021 npj Quantum Mater. 6 96 |
[21] | Zhang S C and Hu J 2001 Science 294 823 |
[22] | Bernevig B A and Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press) |
[23] | Qi X L, Hughes T L, and Zhang S C 2008 Phys. Rev. B 78 195424 |
[24] | Mochol-Grzelak M, Dauphin A, Celi A, and Lewenstein M 2018 Quantum Sci. Technol. 4 014009 |
[25] | Sugawa S, Salces-Carcoba F, Perry A R, Yue Y, and Spielman I B 2018 Science 360 1429 |
[26] | Zhang W X, Di F X, Zheng X G, Sun H J, and Zhang X D 2023 Nat. Commun. 14 1083 |
[27] | Bouhon A, Zhu Y Q, Slager R J, and Palumbo G 2023 arXiv:2301.08827v1 [cond-mat.mes-hall] |
[28] | Li Y, Zhang S C, and Wu C 2013 Phys. Rev. Lett. 111 186803 |
[29] | Zhu Y Q, Zheng Z, Palumbo G, and Wang Z D 2022 Phys. Rev. Lett. 129 196602 |
[30] | Terrier F and Kunst F K 2020 Phys. Rev. Res. 2 023364 |
[31] | Chen R, Yi X X, and Zhou B 2023 Phys. Rev. B 108 085306 |
[32] | Price H M, Zilberberg O, Ozawa T, Carusotto I, and Goldman N 2015 Phys. Rev. Lett. 115 195303 |
[33] | Ozawa T, Price H M, Goldman N, Zilberberg O, and Carusotto I 2016 Phys. Rev. A 93 043827 |
[34] | Chen Z G, Zhu W, Tan Y, Wang L, and Ma G 2021 Phys. Rev. X 11 011016 |
[35] | Chen X D, Shi F L, Liu J W, Shen K, He X T, Chan C T, Chen W J, and Dong J W 2022 Natl. Sci. Rev. 10 nwac289 |
[36] | Kim K W, Bagrets D, Micklitz T, and Altland A 2023 Phys. Rev. X 13 011003 |
[37] | Peng Y and Refael G 2018 Phys. Rev. B 97 134303 |
[38] | Lohse M, Schweizer C, Price H M, Zilberberg O, and Bloch I 2018 Nature 553 55 |
[39] | Zilberberg O, Huang S, Guglielmon J, Wang M, Chen K P, Kraus Y E, and Rechtsman M C 2018 Nature 553 59 |
[40] | Kraus Y E, Ringel Z, and Zilberberg O 2013 Phys. Rev. Lett. 111 226401 |
[41] | Edge J M, Tworzydło J, and Beenakker C W J 2012 Phys. Rev. Lett. 109 135701 |
[42] | Lee C H, Wang Y, Chen Y, and Zhang X 2018 Phys. Rev. B 98 094434 |
[43] | Petrides I, Price H M, and Zilberberg O 2018 Phys. Rev. B 98 125431 |
[44] | Wang Y, Price H M, Zhang B, and Chong Y D 2020 Nat. Commun. 11 2356 |
[45] | Yu R, Zhao Y X, and Schnyder A P 2020 Natl. Sci. Rev. 7 1288 |
[46] | Chen A, Brand H, Helbig T, Hofmann T, Imhof S, Fritzsche A, KieBling T, Stegmaier A, Upreti L K, Neupert T, Bzdušek T, Greiter M, Thomale R, and Boettcher I 2023 Nat. Commun. 14 622 |
[47] | Liu H, Lai P, Wang H, Cheng H, Tian J, and Chen S 2023 Nanophotonics 12 2273 |
[48] | Jin L and Song Z 2019 Phys. Rev. B 99 081103 |
[49] | Shen J L, Yao Q S, Zeng Q Q, Sun H Y, Xi X K, Wu G H, Wang W H, Shen B G, Liu Q H, and Liu E K 2020 Phys. Rev. Lett. 125 086602 |
[50] | Wu H C, Jin L, and Song Z 2021 Phys. Rev. B 103 235110 |
[51] | Ma Z, Liu Y, Xie Y X, and Wang Y S 2023 Phys. Rev. Appl. 19 054038 |
[52] | Jin K H, Jiang W, Sethi G, and Liu F 2023 Nanoscale 15 12787 |
[53] | Wu H C, Xu H S, Xie L C, and Jin L 2024 Phys. Rev. Lett. 132 083801 |
[54] | Dahlhaus J P, Fregoso B M, and Moore J E 2015 Phys. Rev. Lett. 114 246802 |
[55] | Kaladzhyan V, Simon P, and Trif M 2017 Phys. Rev. B 96 020507 |
[56] | Sie E J, McIver J W, Lee Y H, Fu L, Kong J, and Gedik N 2015 Nat. Mater. 14 290 |
[57] | Lindner N H, Refael G, and Galitski V 2011 Nat. Phys. 7 490 |
[58] | Wang Y H, Steinberg H, Jarillo-Herrero P, and Gedik N 2013 Science 342 453 |
[59] | Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A, and Gedik N 2016 Nat. Phys. 12 306 |
[60] | McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, and Cavalleri A 2019 Nat. Phys. 16 38 |
[61] | Zhou S H, Bao C H, Fan B S, Zhou H, Gao Q X, Zhong H Y, Lin T Y, Liu H, Yu P, Tang P Z, Meng S, Duan W H, and Zhou S Y 2023 Nature 614 75 |
[62] | He L, Addison Z, Jin J, Mele E J, Johnson S G, and Zhen B 2019 Nat. Commun. 10 4194 |
[63] | Ito S, Schüler M, Meierhofer M, Schlauderer S, Freudenstein J, Reimann J, Afanasiev D, Kokh K A, Tereshchenko O E, Güdde J, Sentef M A, Höfer U, and Huber R 2023 Nature 616 696 |
[64] | Katan Y T and Podolsky D 2013 Phys. Rev. Lett. 110 016802 |
[65] | Sun X Q, Xiao M, Bzdušek T, Zhang S C, and Fan S 2018 Phys. Rev. Lett. 121 196401 |
[66] | Lee C H, Ho W W, Yang B, Gong J, and Papić Z 2018 Phys. Rev. Lett. 121 237401 |
[67] | Chen R, Zhou B, and Xu D H 2018 Phys. Rev. B 97 155152 |
[68] | Chen R, Xu D H, and Zhou B 2018 Phys. Rev. B 98 235159 |
[69] | Nakagawa M, Slager R J, Higashikawa S, and Oka T 2020 Phys. Rev. B 101 075108 |
[70] | Zhan F Y, Ning Z, Gan L Y, Zheng B B, Fan J, and Wang R 2022 Phys. Rev. B 105 L081115 |
[71] | Ning Z, Fu B, Xu D H, and Wang R 2022 Phys. Rev. B 105 L201114 |
[72] | Jangjan M, Foa Torres L E F, and Hosseini M V 2022 Phys. Rev. B 106 224306 |
[73] | Qin F, Lee C H, and Chen R 2022 Phys. Rev. B 106 235405 |
[74] | Olin S and Lee W C 2023 Phys. Rev. B 107 094310 |
[75] | Wang Z M, Wang R, Sun J H, Chen T Y, and Xu D H 2023 Phys. Rev. B 107 L121407 |
[76] | Qin F, Lee C H, and Chen R 2023 Phys. Rev. B 108 075435 |
[77] | Jangjan M and Hosseini M V 2020 Sci. Rep. 10 14256 |
[78] | Jangjan M and Hosseini M V 2021 Sci. Rep. 11 12966 |
[79] | Zhan F Y, Zeng J J, Chen Z, Jin X, Fan J, Chen T Y, and Wang R 2023 Nano Lett. 23 2166 |
[80] | Kolodrubetz M H, Nathan F, Gazit S, Morimoto T, and Moore J E 2018 Phys. Rev. Lett. 120 150601 |
[81] | Rudner M S, Lindner N H, Berg E, and Levin M 2013 Phys. Rev. X 3 031005 |
[82] | Kitagawa T, Oka T, Brataas A, Fu L, and Demler E 2011 Phys. Rev. B 84 235108 |
[83] | Oka T and Aoki H 2009 Phys. Rev. B 79 081406 |
[84] | Kitagawa T, Berg E, Rudner M, and Demler E 2010 Phys. Rev. B 82 235114 |
[85] | Gu Z, Fertig H A, Arovas D P, and Auerbach A 2011 Phys. Rev. Lett. 107 216601 |
[86] | Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, and Szameit A 2013 Nature 496 196 |
[87] | Cayssol J, Dóra B, Simon F, and Moessner R 2013 Phys. Status Solidi RRL 7 101 |
[88] | Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229 |
[89] | Perez-Piskunow P M, Usaj G, Balseiro C A, and Torres L E F F 2014 Phys. Rev. B 89 121401 |
[90] | Usaj G, Perez-Piskunow P M, Foa Torres L E F, and Balseiro C A 2014 Phys. Rev. B 90 115423 |
[91] | Kundu A, Fertig H A, and Seradjeh B 2014 Phys. Rev. Lett. 113 236803 |
[92] | Foa Torres L E F, Perez-Piskunow P M, Balseiro C A, and Usaj G 2014 Phys. Rev. Lett. 113 266801 |
[93] | Titum P, Lindner N H, Rechtsman M C, and Refael G 2015 Phys. Rev. Lett. 114 056801 |
[94] | Wan X L, Ning Z, Xu D H, Zheng B B, and Wang R 2023 arXiv:2307.07116v2 [cond-mat.mes-hall] |
[95] | Maczewsky L J, Zeuner J M, Nolte S, and Szameit A 2017 Nat. Commun. 8 13756 |
[96] | Cheng Q Q, Pan Y M, Wang H Q, Zhang C S, Yu D, Gover A, Zhang H, Li T, Zhou L, and Zhu S N 2019 Phys. Rev. Lett. 122 173901 |
[97] | Pyrialakos G G, Apostolidis A, Khajavikhan M, Kantartzis N V, and Christodoulides D N 2023 Phys. Rev. B 107 174313 |
[98] | Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E, and White A G 2012 Nat. Commun. 3 882 |
[99] | Mukherjee S, Spracklen A, Valiente M, Andersson E, Öhberg P, Goldman N, and Thomson R R 2017 Nat. Commun. 8 13918 |
[100] | Afzal S, Zimmerling T J, Ren Y, Perron D, and Van V 2020 Phys. Rev. Lett. 124 253601 |
[101] | Maczewsky L J, Höckendorf B, Kremer M, Biesenthal T, Heinrich M, Alvermann A, Fehske H, and Szameit A 2020 Nat. Mater. 19 855 |
[102] | Fleury R, Khanikaev A B, and Alú A 2016 Nat. Commun. 7 11744 |
[103] | Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, and Zhu X F 2016 Nat. Commun. 7 13368 |
[104] | Zhu W, Xue H, Gong J, Chong Y, and Zhang B 2022 Nat. Commun. 13 11 |
[105] | Cheng Z, Bomantara R W, Xue H, Zhu W, Gong J, and Zhang B 2022 Phys. Rev. Lett. 129 254301 |
[106] | Dabiri S S and Cheraghchi H 2023 J. Appl. Phys. 134 084303 |
[107] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237 |
[108] | Asteria L, Tran D T, Ozawa T, Tarnowski M, Rem B S, Fläschner N, Sengstock K, Goldman N, and Weitenberg C 2019 Nat. Phys. 15 449 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
| |