Chin. Phys. Lett.  2024, Vol. 41 Issue (12): 127402    DOI: 10.1088/0256-307X/41/12/127402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
H$_{3}$Se in the $Im\bar{3}m$ Phase: High-Pressure Superconductor with $T_{\rm c}$ Reaching 200 K at 64 GPa Mediated by Anharmonic Phonons
Yao Ma1, Mingqi Li1, Wenjia Shi1, Vei Wang1, Pugeng Hou2*, and Mi Pang1*
1Department of Applied Physics, School of Sciences, Xi'an University of Technology, Xi'an 710054, China
2College of Science, Northeast Electric Power University, Changchun Road 169, Jilin 132012, China
Cite this article:   
Yao Ma, Mingqi Li, Wenjia Shi et al  2024 Chin. Phys. Lett. 41 127402
Download: PDF(1363KB)   PDF(mobile)(1420KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hydrogen-based compounds have attracted significant attention in recent years due to the discovery of conventional superconductivity with high critical temperature under high pressure, rekindling hopes for finding room-temperature superconductors. In this study, we investigated the vibrational and superconducting properties of H$_{3}$Se in the $Im\bar{3}m$ phase under pressures of 50–200 GPa. Our approach combines the stochastic self-consistent harmonic approximation and first-principles calculations to account for the quantum and anharmonic effects of ions. According to the results, these effects significantly modify the crystal structure, increasing the inner pressure by approximately 8 GPa compared to situations in which they are ignored. The phonon spectra suggest that when these effects are considered, the crystal stabilizes at pressures as low as approximately 61 GPa, which is significantly lower than the previously predicted value of over 100 GPa. Our calculations also highlight the critical role of quantum and anharmonic effects on the electron–phonon coupling properties. Neglecting these factors can result in a significant overestimation of the superconducting critical temperature ($T_{\rm c}$) by approximately 4 K (200 GPa) to 25 K (125 GPa). With anharmonic phonons, the $T_{\rm c}$ calculated from the Migdal–Eliashberg equations reaches 200 K ($\mu^\star=0.1$, $\lambda=4.1$) as the pressure decreases to 64 GPa, indicating that the crystal is a rare high-$T_{\rm c}$ superconductor at moderate pressures.
Received: 14 August 2024      Published: 05 December 2024
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/12/127402       OR      https://cpl.iphy.ac.cn/Y2024/V41/I12/127402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yao Ma
Mingqi Li
Wenjia Shi
Vei Wang
Pugeng Hou
and Mi Pang
[1] Gor'kov L P and Kresin V Z 2018 Rev. Mod. Phys. 90 011001
[2] Sun W, Kuang X, Keen H D J, Lu C, and Hermann A 2020 Phys. Rev. B 102 144524
[3] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, and Eremets M 2020 Phys. Rep. 856 1
[4] Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S et al. 2021 Nat. Commun. 12 5075
[5] Chen B, Conway L J, Sun W, Kuang X, Lu C, and Hermann A 2021 Phys. Rev. B 103 035131
[6] Zhang Z, Cui T, Hutcheon M J, Shipley A M, Song H, Du M, Kresin V Z, Duan D, Pickard C J, and Yao Y 2022 Phys. Rev. Lett. 128 047001
[7] Minkov V S, Bud'ko S L, Balakirev F F, Prakapenka V B, Chariton S, Husband R J, Liermann H P, and Eremets M I 2022 Nat. Commun. 13 3194
[8] Sun Y, Zhong X, Liu H, and Ma Y 2024 Natl. Sci. Rev. 11 nwad270
[9] Eremets M I 2024 Natl. Sci. Rev. 11 nwae047
[10] Cui W and Li Y 2019 Chin. Phys. B 28 107104
[11] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[12] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[13] Boehler R and De Hantsetters K 2004 High Press. Res. 24 391
[14] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73
[15] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[16] Bardeen J, Cooper L N, and Schrieffer J R 1957 Phys. Rev. 108 1175
[17] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[18] Allen P B and Mitrović B 1983 Solid State Phys. 37 1
[19] Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B, and Cui T 2015 Phys. Rev. B 91 180502
[20] Errea I, Belli F, Monacelli L, Sanna A, Koretsune T, Tadano T, Bianco R, Calandra M, Arita R, Mauri F et al. 2020 Nature 578 66
[21] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, and Ma Y 2017 Phys. Rev. Lett. 119 107001
[22] Gao G Y, Oganov A R, Li P F, Li Z W, Wang H, Cui T, Ma Y M, Bergara A, Lyakhov A O, Iitaka T et al. 2010 Proc. Natl. Acad. Sci. USA 107 1317
[23] Kim D Y, Scheicher R H, Pickard C J, Needs R J, and Ahuja R 2011 Phys. Rev. Lett. 107 117002
[24] Liu H, Li Y, Gao G, Tse J S, and Naumov I I 2016 J. Phys. Chem. C 120 3458
[25] Li Y, Hao J, Liu H, Tse J S, Wang Y, and Ma Y 2015 Sci. Rep. 5 9948
[26] Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, and Ma Y 2016 Phys. Rev. Lett. 116 057002
[27] Bianco R, Errea I, Calandra M, and Mauri F 2018 Phys. Rev. B 97 214101
[28] Liang X W, Zhao S T, Shao C C, Bergara A, Liu H, Wang L, Sun R, Zhang Y, Gao Y, Zhao Z et al. 2019 Phys. Rev. B 100 184502
[29] Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X F, He J, Gao G, and Tian Y 2019 Phys. Rev. B 99 100505
[30] Zhang P, Sun Y, Li X, Lv J, and Liu H 2020 Phys. Rev. B 102 184103
[31] Jiang M J, Hai Y L, Tian H L, Ding H B, Feng Y J, Yang C L, Chen X J, and Zhong G H 2022 Phys. Rev. B 105 104511
[32] Zhao W, Duan D, Du M, Yao X, Huo Z, Jiang Q, and Cui T 2022 Phys. Rev. B 106 014521
[33] Du M, Li Z, Duan D, and Cui T 2023 Phys. Rev. B 108 174507
[34] Yang K, Cui W, Hao J, Shi J, and Li Y 2023 Phys. Rev. B 107 024501
[35] Shi L T, Si J G, Turnbull R, Liang A K, Liu P F, and Wang B T 2024 Phys. Rev. B 109 054512
[36] Chen W, Ma T, Huo Z, Yu H, Cui T, and Duan D 2024 Phys. Rev. B 109 224505
[37] Liu S Y, Huo P Y, Jiang W Z, Yang R Y, and Liu Y H 2024 Phys. Rev. B 109 104514
[38] Baroni S, de Gironcoli S, Dal Corso A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[39] Borinaga M, Errea I, Calandra M, Mauri F, and Bergara A 2016 Phys. Rev. B 93 174308
[40] Hou P, Belli F, Bianco R, and Errea I 2021 Phys. Rev. B 103 134305
[41] Monacelli L, Bianco R, Cherubini M, Calandra M, Errea I, and Mauri F 2021 J. Phys.: Condens. Matter 33 363001
[42]Belli F 2022 Characterization of hydrogen based superconductors from first principles (PhD thesis)
[43] Bianco R, Errea I, Paulatto L, Calandra M, and Mauri F 2017 Phys. Rev. B 96 014111
[44] Ribeiro G A S, Paulatto L, Bianco R, Errea I, Mauri F, and Calandra M 2018 Phys. Rev. B 97 014306
[45] Belli F and Errea I 2022 Phys. Rev. B 106 134509
[46] Setty C, Baggioli M, and Zaccone A 2020 Phys. Rev. B 102 174506
[47] Setty C, Baggioli M, and Zaccone A 2021 Phys. Rev. B 103 094519
[48] Setty C, Baggioli M, and Zaccone A 2024 J. Phys.: Condens. Matter 36 173002
[49] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B et al. 2019 Nature 569 528
[50] Zhang X, Xu W, Wang Y, Jiang S, Gorelli F A, Greenberg E, Prakapenka V B, and Goncharov A F 2018 Phys. Rev. B 97 064107
[51] Pace E J, Binns J, Dalladay-Simpson P, Howie R T, and Alvarez M P 2018 Phys. Rev. B 98 106101
[52] Heil C and Boeri L 2015 Phys. Rev. B 92 060508
[53] Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song H F, Yang G, Zhang L, and Ma Y 2015 Sci. Rep. 5 15433
[54] Amsler M 2019 Phys. Rev. B 99 060102
[55] Chang P H, Silayi S, Papaconstantopoulos D A, and Mehl M J 2020 J. Phys. Chem. Solids 139 109315
[56] Ge Y, Zhang F, and Yao Y 2015 arXiv:1507.08525 [cond-mat.supr-con]
[57] Flores-Livas J A, Sanna A, and Gross E K U 2016 Eur. Phys. J. B 89 63
[58] Errea I, Calandra M, and Mauri F 2013 Phys. Rev. Lett. 111 177002
[59] Errea I, Calandra M, and Mauri F 2014 Phys. Rev. B 89 064302
[60] Monacelli L, Errea I, Calandra M, and Mauri F 2018 Phys. Rev. B 98 024106
[61] Monacelli L and Mauri F 2021 Phys. Rev. B 103 104305
[62] Lihm J M and Park C H 2021 Phys. Rev. Res. 3 L032017
[63] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I et al. 2009 J. Phys.: Condens. Matter 21 395502
[64] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[65] Hou P, Ma Y, Pang M, Cai Y, Shen Y, Xie H, and Tian F 2024 J. Chem. Phys. 161 024504
[66] Xie S R, Quan Y, Hire A C, Deng B, DeStefano J M, Salinas I, Shah U S, Fanfarillo L, Lim J, Kim J et al. 2022 npj Comput. Mater. 8 14
Related articles from Frontiers Journals
[1] Xiaolin Ren, Ronny Sutarto, Qiang Gao, Qisi Wang, Jiarui Li, Yao Wang, Tao Xiang, Jiangping Hu, J. Chang, Riccardo Comin, X. J. Zhou, and Zhihai Zhu. Two Distinct Charge Orders in Infinite-Layer PrNiO$_{2+\delta}$ Revealed by Resonant X-Ray Diffraction[J]. Chin. Phys. Lett., 2024, 41(11): 127402
[2] Yunqi Ji, Xiaohan Wang, Xiaohe Li, Wenting Tang, Xinyang Li, Xin Wang, Fangfei Li, Liang Li, and Qiang Zhou. Unveiling a Novel Insulator-to-Metal Transition in La$_{2}$NiO$_{4+\delta}$: Challenging High-Temperature Superconductivity Claimed for Single-Layer Lanthanum Nickelates[J]. Chin. Phys. Lett., 2024, 41(9): 127402
[3] Zhiming Pan, Chen Lu, Fan Yang, and Congjun Wu. Effect of Rare-Earth Element Substitution in Superconducting R$_3$Ni$_2$O$_7$ under Pressure[J]. Chin. Phys. Lett., 2024, 41(8): 127402
[4] Jie-Ran Xue and Fa Wang. Magnetism and Superconductivity in the $t$–$J$ Model of La$_3$Ni$_2$O$_7$ Under Multiband Gutzwiller Approximation[J]. Chin. Phys. Lett., 2024, 41(5): 127402
[5] Qing Li, Ying-Jie Zhang, Zhe-Ning Xiang, Yuhang Zhang, Xiyu Zhu, and Hai-Hu Wen. Signature of Superconductivity in Pressurized La$_{4}$Ni$_{3}$O$_{10}$[J]. Chin. Phys. Lett., 2024, 41(1): 127402
[6] Kun Jiang, Ziqiang Wang, and Fu-Chun Zhang. High-Temperature Superconductivity in La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(1): 127402
[7] Yang Shen, Mingpu Qin, and Guang-Ming Zhang. Effective Bi-Layer Model Hamiltonian and Density-Matrix Renormalization Group Study for the High-$T_{\rm c}$ Superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under High Pressure[J]. Chin. Phys. Lett., 2023, 40(12): 127402
[8] Jun Hou, Peng-Tao Yang, Zi-Yi Liu, Jing-Yuan Li, Peng-Fei Shan, Liang Ma, Gang Wang, Ning-Ning Wang, Hai-Zhong Guo, Jian-Ping Sun, Yoshiya Uwatoko, Meng Wang, Guang-Ming Zhang, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of High-Temperature Superconducting Phase in Pressurized La$_{3}$Ni$_{2}$O$_7$ Crystals[J]. Chin. Phys. Lett., 2023, 40(11): 127402
[9] Run Lv, Wenqian Tu, Dingfu Shao, Yuping Sun, and Wenjian Lu. Physical Origin of Color Changes in Lutetium Hydride under Pressure[J]. Chin. Phys. Lett., 2023, 40(11): 127402
[10] Bin Li, Yeqian Yang, Yuxiang Fan, Cong Zhu, Shengli Liu, and Zhixiang Shi. Theoretical Predictions on Superconducting Phase above Room Temperature in Lutetium-Beryllium Hydrides at High Pressures[J]. Chin. Phys. Lett., 2023, 40(9): 127402
[11] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 127402
[12] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 127402
[13] Yueying Li, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu, and Yuefeng Nie. Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2023, 40(7): 127402
[14] Fankai Xie, Tenglong Lu, Ze Yu, Yaxian Wang, Zongguo Wang, Sheng Meng, and Miao Liu. Lu–H–N Phase Diagram from First-Principles Calculations[J]. Chin. Phys. Lett., 2023, 40(5): 127402
[15] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Erratum: Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors [Chin. Phys. Lett. 39, 097401 (2022)][J]. Chin. Phys. Lett., 2023, 40(5): 127402
Viewed
Full text


Abstract