Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117504    DOI: 10.1088/0256-307X/41/11/117504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fermionized Dual Vortex Theory for Magnetized Kagomé Spin Liquid
Si-Yu Pan1 and Gang v. Chen1,2*
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Cite this article:   
Si-Yu Pan and Gang v. Chen 2024 Chin. Phys. Lett. 41 117504
Download: PDF(1096KB)   PDF(mobile)(1130KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Inspired by the recent quantum oscillation measurement on the kagomé lattice antiferromagnet in finite magnetic fields, we raise the question about the physical contents of the emergent fermions and the gauge fields if the $U(1)$ spin liquid is relevant for the finite-field kagomé lattice antiferromagnet. Clearly, the magnetic field is non-perturbative in this regime, and the finite-field state has no direct relation with the $U(1)$ Dirac spin liquid proposal at zero field. We here consider the fermionized dual vortex liquid state as one possible candidate theory to understand the magnetized kagomé spin liquid. Within the dual vortex theory, the $S^z$ magnetization is the emergent $U(1)$ gauge flux, and the fermionized dual vortex is the emergent fermion. The magnetic field polarizes the spin component that modulates the $U(1)$ gauge flux for the fermionized vortices and generates the quantum oscillation. Within the mean-field theory, we discuss the gauge field correlation, the vortex–antivortex continuum and the vortex thermal Hall effect.
Received: 26 August 2024      Published: 14 November 2024
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117504       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Yu Pan and Gang v. Chen
[1] Zheng G, Zhu Y, Chen K W, Kang B, Zhang D, Jenkins K, Chan A, Zeng Z, Xu A, Valenzuela O A, Blawat J, Singleton J, Lee P A, Li S, and Li L 2023 arXiv:2310.07989 [cond-mat.str-el]
[2] Motrunich O I 2006 Phys. Rev. B 73 155115
[3] Norman M R 2016 Rev. Mod. Phys. 88 041002
[4] Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205
[5] Hermele M, Ran Y, Lee P A, and Wen X G 2008 Phys. Rev. B 77 224413
[6] Nishimoto S, Shibata N, and Hotta C 2013 Nat. Commun. 4 2287
[7] Fisher M P A 2004 Strong Interactions in Low Dimensions (Berlin: Springer) p 419
[8] Alicea J, Motrunich O I, Hermele M, and Fisher M P A 2005 Phys. Rev. B 72 064407
[9] Alicea J, Motrunich O I, and Fisher M P A 2005 Phys. Rev. Lett. 95 247203
[10] Alicea J, Motrunich O I, and Fisher M P A 2006 Phys. Rev. B 73 174430
[11] Ryu S, Motrunich O I, Alicea J, and Fisher M P A 2007 Phys. Rev. B 75 184406
[12] Alicea J and Fisher M P A 2007 Phys. Rev. B 75 144411
[13] Zhang X T, Gao Y H, Liu C, and Chen G 2020 Phys. Rev. Res. 2 013066
[14] Chen G 2017 Phys. Rev. B 96 195127
[15] Hermele M, Fisher M P A, and Balents L 2004 Phys. Rev. B 69 064404
[16] Durst A C and Lee P A 2000 Phys. Rev. B 62 1270
[17] Lee P A and Nagaosa N 2013 Phys. Rev. B 87 064423
[18] Lee P A and Nagaosa N 1992 Phys. Rev. B 46 5621
[19] Zhang X T, Gao Y H, and Chen G 2024 Phys. Rep. 1070 1
[20] Yang Y F, Zhang G M, and Zhang F C 2020 Phys. Rev. Lett. 124 186602
[21] Essin A M and Hermele M 2014 Phys. Rev. B 90 121102
[22] Zeng Z Y, Zhou C K, Zhou H L, Han L K, Chi R Z, Li K, Kofu M, Nakajima K, Wei Y, Zhang W L, Mazzone D G, Meng Z Y, and Li S L 2023 arXiv:2310.11646 [cond-mat.str-el]
[23] Sachdev S 1992 Phys. Rev. B 45 12377
[24] Wang F and Vishwanath A 2006 Phys. Rev. B 74 174423
Related articles from Frontiers Journals
[1] Mingtai Xie, Weizhen Zhuo, Yanzhen Cai, Zheng Zhang, and Qingming Zhang. Rare-Earth Chalcogenides: An Inspiring Playground for Exploring Frustrated Magnetism[J]. Chin. Phys. Lett., 2024, 41(11): 117504
[2] Weiwei Liu, Zheng Zhang, Dayu Yan, Jianshu Li, Zhitao Zhang, Jianting Ji, Feng Jin, Youguo Shi, and Qingming Zhang. Finite Temperature Magnetism in the Triangular Lattice Antiferromagnet KErTe$_{2}$[J]. Chin. Phys. Lett., 2024, 41(9): 117504
[3] Meng Wang, Hai-Hu Wen, Tao Wu, Dao-Xin Yao, and Tao Xiang. Normal and Superconducting Properties of La$_3$Ni$_2$O$_7$[J]. Chin. Phys. Lett., 2024, 41(7): 117504
[4] Haiyuan Zou and Wei Wang. Gapless Spin Liquid and Nonlocal Corner Excitation in the Spin-$1/2$ Heisenberg Antiferromagnet on Fractal[J]. Chin. Phys. Lett., 2023, 40(5): 117504
[5] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 117504
[6] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 117504
[7] Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(5): 117504
[8] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 117504
[9] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 117504
[10] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 117504
[11] J.-J. Wen, Y. S. Lee. The Search for the Quantum Spin Liquid in Kagome Antiferromagnets[J]. Chin. Phys. Lett., 2019, 36(5): 117504
[12] Zili Feng, Wei Yi, Kejia Zhu, Yuan Wei, Shanshan Miao, Jie Ma, Jianlin Luo, Shiliang Li, Zi Yang Meng, Youguo Shi. From Claringbullite to a New Spin Liquid Candidate Cu$_3$Zn(OH)$_6$FCl[J]. Chin. Phys. Lett., 2019, 36(1): 117504
[13] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 117504
[14] Zili Feng, Zheng Li, Xin Meng, Wei Yi, Yuan Wei, Jun Zhang, Yan-Cheng Wang, Wei Jiang, Zheng Liu, Shiyan Li, Feng Liu, Jianlin Luo, Shiliang Li, Guo-qing Zheng, Zi Yang Meng, Jia-Wei Mei, Youguo Shi. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr [J]. Chin. Phys. Lett., 2017, 34(7): 117504
Viewed
Full text


Abstract