Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 113701    DOI: 10.1088/0256-307X/41/11/113701
ATOMIC AND MOLECULAR PHYSICS |
Long-Lifetime Optical Trapping of a $^{40}$Ca$^{+}$ Ion
Zheng Chen1,2,3†, Miao Wang1,2†, Baolin Zhang1,2, Huaqing Zhang1,2, Zixiao Ma1,2,3, Ruming Hu1,2,3, Yao Huang1,2*, Kelin Gao1,2, and Hua Guan1,2,4
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
2Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4Wuhan Institute of Quantum Technology, Wuhan 430206, China
Cite this article:   
Zheng Chen, Miao Wang, Baolin Zhang et al  2024 Chin. Phys. Lett. 41 113701
Download: PDF(1440KB)   PDF(mobile)(1459KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We have experimentally achieved the all-optical trapping of a $^{40}$Ca$^{+}$ ion. An optical dipole trap was established using a high-power, far-detuned, tightly focused laser with a wavelength of 532 nm. The single $^{40}$Ca$^{+}$ ion was trapped without any RF fields and demonstrated a long lifetime of over 3 s. In this experiment, we implemented several measures to improve the optical trapping probability, including focusing the dipole beam waist near the diffraction limit, precisely compensating for stray electric fields, and mitigating electron shelving in metastable states. The optical trapping of a $^{40}$Ca$^{+}$ ion eliminates the influence of micromotion induced by RF fields, potentially paving the way for development of all-optical trapping ion optical clocks.
Received: 11 August 2024      Published: 11 November 2024
PACS:  37.10.Ty (Ion trapping)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
  42.62.Fi (Laser spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/113701       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/113701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng Chen
Miao Wang
Baolin Zhang
Huaqing Zhang
Zixiao Ma
Ruming Hu
Yao Huang
Kelin Gao
and Hua Guan
[1] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[2] Zhiqiang Z, Arnold K J, Kaewuam R, and Barrett M D 2023 Sci. Adv. 9 eadg1971
[3] Aeppli A, Kim K, Warfield W, Safronova M S, and Ye J 2024 Phys. Rev. Lett. 133 023401
[4] Cai Z, Luan C Y, Ou L, Tu H, Yin Z, Zhang J N, and Kim K 2023 J. Korean Phys. Soc. 82 882
[5] Evered S J, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li S H, Geim A A, Wang T T, Maskara N, Levine H, Semeghini G, Greiner M, Vuletić V, and Lukin M D 2023 Nature 622 268
[6] Paul W 1990 Rev. Mod. Phys. 62 531
[7] Phillips W D 1998 Rev. Mod. Phys. 70 721
[8] Kiesenhofer D, Hainzer H, Zhdanov A, Holz P C, Bock M, Ollikainen T, and Roos C F 2023 PRX Quantum 4 020317
[9] Bloch D, Hofer B, Cohen S R, Browaeys A, and Ferrier-Barbut I 2023 Phys. Rev. Lett. 131 203401
[10] Schäfer F, Fukuhara T, Sugawa S, Takasu Y, and Takahashi Y 2020 Nat. Rev. Phys. 2 411
[11] Cetina M, Grier A T, and Vuletić V 2012 Phys. Rev. Lett. 109 253201
[12] Nguyên L H, Kalev A, Barrett M D, and Englert B G 2012 Phys. Rev. A 85 052718
[13] Ushijima I, Takamoto M, Das M, Ohkubo T, and Katori H 2015 Nat. Photonics 9 185
[14] Huntemann N, Sanner C, Lipphardt B, Tamm Chr, and Peik E 2016 Phys. Rev. Lett. 116 063001
[15] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87
[16] Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M, and Gao K 2022 Phys. Rev. Appl. 17 034041
[17] Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H, and Gao K 2023 Phys. Rev. Appl. 19 064004
[18] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, and Gao K 2016 Phys. Rev. Lett. 116 013001
[19] Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, and Julienne P S 2019 Rev. Mod. Phys. 91 035001
[20] Härter A and Hecker Denschlag J 2014 Contemp. Phys. 55 33
[21] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, and Monroe C 2018 Quantum Sci. Technol. 4 014004
[22] Yum D and Choi T 2022 Curr. Appl. Phys. 41 163
[23] Schneider Ch, Enderlein M, Huber T, and Schaetz T 2010 Nat. Photonics 4 772
[24] Huber T, Lambrecht A, Schmidt J, Karpa L, and Schaetz T 2014 Nat. Commun. 5 5587
[25] Lambrecht A, Schmidt J, Weckesser P, Debatin M, Karpa L, and Schaetz T 2017 Nat. Photonics 11 704
[26] Enderlein M, Huber T, Schneider C, and Schaetz T 2012 Phys. Rev. Lett. 109 233004
[27] Schmidt J, Lambrecht A, Weckesser P, Debatin M, Karpa L, and Schaetz T 2018 Phys. Rev. X 8 021028
[28] Schmidt J, Weckesser P, Thielemann F, Schaetz T, and Karpa L 2020 Phys. Rev. Lett. 124 053402
[29] Weckesser P, Thielemann F, Wiater D, Wojciechowska A, Karpa L, Jachymski K, Tomza M, Walker T, and Schaetz T 2021 Nature 600 429
[30] Dubé P, Madej A A, Zhou Z, and Bernard J E 2013 Phys. Rev. A 87 023806
[31] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, and Gill P 2014 Phys. Rev. Lett. 113 210801
[32] Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E, and Bergquist J C 2006 Phys. Rev. Lett. 97 020801
[33]Grimm R, Weidemüller M, and Ovchinnikov Y B 2000 Advances in Atomic, Molecular, and Optical Physics (Amsterdam: Elsevier) vol 42 p 95
[34] Wang M, Chen Z, Huang Y, Guan H, and Gao K L 2021 Chin. Phys. B 30 053702
[35] Knünz S, Herrmann M, Batteiger V, Saathoff G, Hänsch T W, and Udem Th 2012 Phys. Rev. A 85 023427
[36] Berkeland D J, Miller J D, Bergquist J C, Itano W M, and Wineland D J 1998 J. Appl. Phys. 83 5025
[37] Shao H, Wang M, Zeng M, Guan H, and Gao K 2018 J. Phys. Commun. 2 095019
[38] Gulde S, Rotter D, Barton P, Schmidt-Kaler F, Blatt R, and Hogervorst W 2001 Appl. Phys. B 73 861
[39]Wang M, Chen Z, Huang Y, Guan H, and Gao K L 2023 Chin. J. Quantum Electron. 40 127
[40] Wilson E B 1927 J. Am. Stat. Assoc. 22 209
[41] Drakoudis A, Söllner M, and Werth G 2006 Int. J. Mass Spectrom. 252 61
[42] Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, and Gao K L 2015 Phys. Rev. Lett. 114 223001
[43] Huang Y, Wang M, Chen Z, Li C, Zhang H, Zhang B, Tang L, Shi T, Guan H, and Gao K L 2024 New J. Phys. 26 043021
[44] Jiang J, Jiang L, Wu Z W, Zhang D H, Xie L Y, and Dong C Z 2019 Phys. Rev. A 99 032510
[45] Jiang J, Jiang L, Wang X, Zhang D H, Xie L Y, and Dong C Z 2017 Phys. Rev. A 96 042503
[46] Dimarcq N, Gertsvolf M, Mileti G, Bize S, Oates C W, Peik E, Calonico D, Ido T, Tavella P, Meynadier F, Petit G, Panfilo G, Bartholomew J, Defraigne P, Donley E A, Hedekvist P O, Sesia I, Wouters M, Dubé P, Fang F, Levi F, Lodewyck J, Margolis H S, Newell D, Slyusarev S, Weyers S, Uzan J P, Yasuda M, Yu D H, Rieck C, Schnatz H, Hanado Y, Fujieda M, Pottie P E, Hanssen J, Malimon A, and Ashby N 2024 Metrologia 61 012001
[47] Kim H, Heo M S, Park C Y, Yu D H, and Lee W K 2021 Metrologia 58 055007
[48] Zhang A, Xiong Z, Chen X, Jiang Y, Wang J, Tian C, Zhu Q, Wang B, Xiong D, He L, Ma L, and Lyu B 2022 Metrologia 59 065009
[49] Dubé P, Madej A A, Shiner A, and Jian B 2015 Phys. Rev. A 92 042119
[50] Hoenig D, Thielemann F, Karpa L, Walker T, Mohammadi A, and Schaetz T 2024 Phys. Rev. Lett. 132 133003
Related articles from Frontiers Journals
[1] Xiao Song, Teng Liu, Ji Bian, Pengfei Lu, Yang Liu, Feng Zhu, and Le Luo. Non-Hermitian CHSH$^*$ Game with a Single Trapped-Ion Qubit[J]. Chin. Phys. Lett., 2024, 41(6): 113701
[2] Hong-Ling Yue, Hu Shao, Zheng Chen, Peng-Cheng Fang, Meng-Yan Zeng, Bao-Lin Zhang, Yao Huang, Ji-Guang Li, Qun-Feng Chen, Hua Guan, and Ke-Lin Gao. Isotope-Shift Measurement of Bosonic Yb$^{+}$ Ions[J]. Chin. Phys. Lett., 2023, 40(9): 113701
[3] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 113701
[4] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 113701
[5] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 113701
[6] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 113701
[7] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 113701
[8] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 113701
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 113701
[10] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 113701
[11] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 113701
[12] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 113701
[13] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 113701
[14] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 113701
[15] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 113701
Viewed
Full text


Abstract