GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
A Narrowband Burst from FRB 20190520B Simultaneously Observed by FAST and Parkes |
Yuhao Zhu1,2, Chenhui Niu3*, Shi Dai4, Di Li5,1*, Pei Wang1,6, Yi Feng7,8, Jingwen Wu2,1, Yongkun Zhang1,2, Xianghan Cui1,2,9, Junshuo Zhang1,2, and Jinhuang Cao1,2 |
1National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Institute of Astrophysics, Central China Normal University, Wuhan 430079, China 4Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia 5Department of Astronomy, Tsinghua University, Beijing 100084, China 6Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China 7Research Center for Astronomical Computing, Zhejiang Laboratory, Hangzhou 311100, China 8Institute for Astronomy, School of Physics, Zhejiang University, Hangzhou 310027, China 9International Centre for Radio Astronomy Research, Curtin Institute of Radio Astronomy, Perth 6102, Australia
|
|
Cite this article: |
Yuhao Zhu, Chenhui Niu, Shi Dai et al 2024 Chin. Phys. Lett. 41 109501 |
|
|
Abstract Fast radio bursts (FRBs) are short-duration radio transients with mysterious origins. Since their uncertainty, there are very few FRBs observed by different instruments simultaneously. This study presents a detailed analysis of a burst from FRB 20190520B observed by FAST and Parkes at the same time. The spectrum of this individual burst ended at the upper limit of the FAST frequency band and was simultaneously detected by the Parkes telescope in the 1.5–1.8 GHz range. By employing spectral energy distribution (SED) and spectral sharpness methods, we confirmed the presence of narrow-band radiation in FRB 20190520B, which is crucial for understanding its radiation mechanisms. Our findings support the narrow-band characteristics that most repeaters exhibit. This work also highlights the necessity of continued multiband observations to explore its periodicity and frequency-dependent properties, contributing to an in-depth understanding of FRB phenomena.
|
|
Received: 01 July 2024
Published: 11 October 2024
|
|
PACS: |
95.85.-e
|
(Astronomical observations (additional primary heading(s) must be chosen with these entries to represent the astronomical objects and/or properties studied))
|
|
95.85.Bh
|
(Radio, microwave (>1 mm))
|
|
95.55.Jz
|
(Radio telescopes and instrumentation; heterodyne receivers)
|
|
95.30.Gv
|
(Radiation mechanisms; polarization)
|
|
|
|
|
[1] | Lorimer D R, Bailes M, McLaughlin M A, Narkevic D J, and Crawford F 2007 Science 318 777 |
[2] | Cordes J M and Lazio T J W 2002 arXiv:astro-ph/0207156 |
[3] | Yao J M, Manchester R N, and Wang N 2017 Astrophys. J. 835 29 |
[4] | Petroff E, Hessels J W T, and Lorimer D R 2019 Astron. Astrophys. Rev. 27 4 |
[5] | Amiri M, Andersen B C, Bandura K et al. 2021 Astrophys. J. Suppl. Ser. 257 59 |
[6] | Amiri M, Bandura K, Bhardwaj M et al. 2019 Nature 566 235 |
[7] | Cordes J M and Chatterjee S 2019 Annu. Rev. Astron. Astrophys. 57 417 |
[8] | Platts E, Weltman A, Walters A, Tendulkar S P, Gordin J E B, and Kandhai S 2019 Phys. Rep. 821 1 |
[9] | Zhang B 2020 Nature 587 45 |
[10] | Li C K, Lin L, Xiong S L et al. 2021 Nat. Astron. 5 378 |
[11] | Pleunis Z, Good D C, Kaspi V M et al. 2021 Astrophys. J. 923 1 |
[12] | Hashimoto T, Goto T, On A Y L, Lu T Y, Santos D J D, Ho S C C, Kim S J, Wang T W, and Hsiao T Y Y 2020 Mon. Not. R. Astron. Soc. 498 3927 |
[13] | Hashimoto T, Goto T, Chen B H, Ho S C C, Hsiao T Y Y, Wong Y H V, On A Y L, Kim S J, Kilerci-Eser E, Huang K C, Santos D J D, and Yamasaki S 2022 Mon. Not. R. Astron. Soc. 511 1961 |
[14] | Zhang R C and Zhang B 2022 Astrophys. J. Lett. 924 L14 |
[15] | Locatelli N, Ronchi M, Ghirlanda G, and Ghisellini G 2019 Astron. & Astrophys. 625 A109 |
[16] | James C W, Prochaska J X, Macquart J P, North-Hickey F O, Bannister K W, and Dunning A 2021 Mon. Not. R. Astron. Soc.: Lett. 510 L18 |
[17] | Zhu Y, Niu C, Cui X, Li D, Feng Y, Tsai C, Wang P, Zhang Y, Meng F, and Zheng Z 2023 Universe 9 251 |
[18] | Nan R D, Li D, Jin C J, Wang Q M, Zhu L C, Zhu W B, Zhang H Y, Yue Y L, and Qian L 2011 Int. J. Mod. Phys. D 20 989 |
[19] | Li D, Wang P, Qian L, Krco M, Dunning A, Jiang P, Yue Y L, Jin C J, Zhu Y, Pan Z C, and Nan R D 2018 IEEE Microwave Mag. 19 112 |
[20] | Niu C H, Aggarwal K, Li D et al. 2022 Nature 606 873 |
[21] | Katz J I 2022 Mon. Not. R. Astron. Soc.: Lett. 514 L27 |
[22] | Ocker S K, Cordes J M, Chatterjee S, Li D, Niu C H, McKee J W, Law C J, and Anna-Thomas R 2022 Mon. Not. R. Astron. Soc. 519 821 |
[23] | Zhang X, Yu W, Law C, Li D, Chatterjee S, Demorest P, Yan Z, Niu C, Aggarwal K, Anna-Thomas R, Burke-Spolaor S, Connor L, Tsai C W, Zhu W, and Luo G 2023 Astrophys. J. 959 89 |
[24] | Law C J, Connor L, and Aggarwal K 2022 Astrophys. J. 927 55 |
[25] | Bhandari S, Marcote B, Sridhar N, Eftekhari T, Hessels J W T, Hewitt D M, Kirsten F, Ould-Boukattine O S, Paragi Z, and Snelders M P 2023 Astrophys. J. Lett. 958 L19 |
[26] | Feng Y, Zhang Y K, Li D, Yang Y P, Wang P, Niu C H, Dai S, and Yao J M 2022 Sci. Bull. 67 2398 |
[27] | Ocker S K, Cordes J M, Chatterjee S, Niu C H, Li D, Mc-Kee J W, Law C J, Tsai C W, Anna-Thomas R, Yao J M, and Cruces M 2022 Astrophys. J. 931 87 |
[28] | Wang W Y, Yang Y P, Niu C H, Xu R, and Zhang B 2022 Astrophys. J. 927 105 |
[29] | Zhao Z Y and Wang F Y 2021 Astrophys. J. Lett. 923 L17 |
[30] | Pastor-Marazuela I, Connor L, Van Leeuwen J et al. 2021 Nature 596 505 |
[31] | Gajjar V, Siemion A P V, Price D C et al. 2018 Astrophys. J. 863 2 |
[32] | Hessels J W T, Spitler L G, Seymour A D et al. 2019 Astrophys. J. 876 L23 |
[33] | Pearlman A B, Majid W A, Prince T A, Nimmo K, Hessels J W T, Naudet C J, and Kocz J 2020 Astrophys. J. Lett. 905 L27 |
[34] | Feng Y, Li D, Yang Y P et al. 2022 Science 375 1266 |
[35] | Sand K R, Faber J T, Gajjar V et al. 2022 Astrophys. J. 932 98 |
[36] | Bethapudi S, Spitler L G, Main R A, Li D Z, and Wharton R S 2023 Mon. Not. R. Astron. Soc. 524 3303 |
[37] | Pleunis Z, Michilli D, Bassa C G et al. 2021 Astrophys. J. Lett. 911 L3 |
[38] | Good D C, Chawla P, Fonseca E, Kaspi V, Meyers B W, Pleunis Z, Sand K R, Scholz P, Stairs I H, and Tendulkar S P 2023 Astrophys. J. 944 70 |
[39] | Kumar P, Luo R, Price D C, Shannon R M, Deller A T, Bhandari S, Feng Y, Flynn C, Jiang J C, Uttarkar P A, Wang S Q, and Zhang S B 2023 Mon. Not. R. Astron. Soc. 526 3652 |
[40] | Zhang Y K, Li D, Zhang B et al. 2023 Astrophys. J. 955 142 |
[41] | Fonseca E, Pleunis Z, Breitman D et al. 2024 Astrophys. J. Suppl. Ser. 271 49 |
[42] | Jiang P, Tang N Y, Hou L G et al. 2020 Res. Astron. Astrophys. 20 064 |
[43] | Barsdell B R, Bailes M, Barnes D G, and Fluke C J 2012 Mon. Not. R. Astron. Soc. 422 379 |
[44] | Hobbs G, Manchester R N, Dunning A et al. 2020 Publ. Astron. Soc. Aust. 37 e012 |
[45] | van Straten W, Demorest P, and Osłowski S 2012 arXiv:1205.6276 [astro-ph.IM] |
[46] | Seymour A, Michilli D, and Pleunis Z 2019 Astrophysics Source Code Library ascl:1910.004 |
[47] | Yang Y P 2023 Astrophys. J. 956 67 |
[48] | Wang W Y, Yang Y P, Li H B, Liu J, and Xu R 2024 Astron. & Astrophys. 685 A87 |
[49] | Kumar P, Qu Y, and Zhang B 2024 arXiv:2406.01266 [astro-ph.HE] |
[50] | Kumar P, Shannon R M, Flynn C et al. 2020 Mon. Not. R. Astron. Soc. 500 2525 |
[51] | Lyu F, Liang E W, and Li D 2024 Astrophys. J. 966 115 |
[52] | Lyu F and Liang E W 2023 Mon. Not. R. Astron. Soc. 522 5600 |
[53] | Cui X H, Wang Z W, Zhang C M, Niu C H, Li D, Zhang J W, and Wang D H 2023 Astrophys. J. 956 35 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|