Chin. Phys. Lett.  2024, Vol. 41 Issue (10): 100501    DOI: 10.1088/0256-307X/41/10/100501
GENERAL |
From Complexification to Self-Similarity: New Aspects of Quantum Criticality
Yang Liu1, Erhai Zhao2*, and Haiyuan Zou1*
1Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
Cite this article:   
Yang Liu, Erhai Zhao, and Haiyuan Zou 2024 Chin. Phys. Lett. 41 100501
Download: PDF(846KB)   PDF(mobile)(887KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum phase transitions are a fascinating area of condensed matter physics. The extension through complexification not only broadens the scope of this field but also offers a new framework for understanding criticality and its statistical implications. This mini review provides a concise overview of recent developments in complexification, primarily covering finite temperature and equilibrium quantum phase transitions, as well as their connection with dynamical quantum phase transitions and non-Hermitian physics, with a particular focus on the significance of Fisher zeros. Starting from the newly discovered self-similarity phenomenon associated with complex partition functions, we further discuss research on self-similar systems briefly. Finally, we offer a perspective on these aspects.
Received: 01 July 2024      Review Published: 22 October 2024
PACS:  05.30.Rt (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/10/100501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Liu
Erhai Zhao
and Haiyuan Zou
[1]Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[2] Senthil T, Balents L, Sachdev S, Vishwanath A, and Fisher M P A 2004 Phys. Rev. B 70 144407
[3] Chen X, Gu Z C, and Wen X G 2011 Phys. Rev. B 84 235128
[4]Diep H 2013 Frustrated Spin Systems (Singapore: World Scientific)
[5] Chandra P and Doucot B 1988 Phys. Rev. B 38 9335
[6] Kitaev A 2006 Ann. Phys. 321 2
[7] Anderson P W 1987 Science 235 1196
[8] Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502
[9] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[10] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[11] Chen L H, Wang D, Zhou Y, and Wang Q H 2020 Chin. Phys. Lett. 37 017403
[12] Wang M, Wen H H, Wu T, Yao D X, and Xiang T 2024 Chin. Phys. Lett. 41 077402
[13] Sandvik A W 2010 AIP Conf. Proc. 1297 135
[14] White S R 1992 Phys. Rev. Lett. 69 2863
[15] Cirac J I, Pérez-García D, Schuch N, and Verstraete F 2021 Rev. Mod. Phys. 93 045003
[16] Meurice Y, Sakai R, and Unmuth-Yockey J 2022 Rev. Mod. Phys. 94 025005
[17] Yang C N and Lee T D 1952 Phys. Rev. 87 404
[18] Lee T D and Yang C N 1952 Phys. Rev. 87 410
[19] Wei B B and Liu R B 2012 Phys. Rev. Lett. 109 185701
[20] Peng X, Zhou H, Wei B B, Cui J, Du J, and Liu R B 2015 Phys. Rev. Lett. 114 010601
[21]Fisher M and Brittin W 1965 Statistical Physics, Weak Interactions, Field Theory. In: Lectures in Theoretical Physics (Boulder: University of Colorado Press) vol VIIC
[22] Denbleyker A, Liu Y Z, Meurice Y, Qin M P, Xiang T, Xie Z Y, Yu J F, and Zou H Y 2014 Phys. Rev. D 89 016008
[23] Denbleyker A, Du D, Liu Y, Meurice Y, and Zou H 2010 Phys. Rev. Lett. 104 251601
[24] Biskup M, Borgs C, Chayes J T, Kleinwaks L J, and Kotecký R 2000 Phys. Rev. Lett. 84 4794
[25] Biskup M, Borgs C, Chayes J T, Kleinwaks L J, and Kotecky R 2004 Commun. Math. Phys. 251 79
[26] Janke W, Johnston D A, and Kenna R 2004 Nucl. Phys. B 682 618
[27] Taylor M P, Aung P P, and Paul W 2013 Phys. Rev. E 88 012604
[28] Brascamp H J and Kunz H 1974 J. Math. Phys. 15 65
[29] Wood D W 1985 J. Phys. A 18 L481
[30] Kim S Y, Hwang C O, and Kim J M 2008 Nucl. Phys. B 805 441
[31] Bena I, Droz M, and Lipowski A 2005 Int. J. Mod. Phys. B 19 4269
[32] Meurice Y and Zou H 2011 Phys. Rev. D 83 056009
[33] Liu Y and Meurice Y 2011 Phys. Rev. D 83 096008
[34] Barbour I M and Bell A J 1992 Nucl. Phys. B 372 385
[35] Bazavov A, Berg B A, Du D, and Meurice Y 2012 Phys. Rev. D 85 056010
[36] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[37] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P, and Xiang T 2012 Phys. Rev. B 86 045139
[38] Polkovnikov A, Sengupta K, Silva A, and Vengalattore M 2011 Rev. Mod. Phys. 83 863
[39] Ye Q J and Li X Z 2023 Sci. Chin. Phys. Mech. & Astron. 66 227212
[40] Heyl M, Polkovnikov A, and Kehrein S 2013 Phys. Rev. Lett. 110 135704
[41] Heyl M 2018 Rep. Prog. Phys. 81 054001
[42] Andraschko F and Sirker J 2014 Phys. Rev. B 89 125120
[43] Budich J C and Heyl M 2016 Phys. Rev. B 93 085416
[44] Karrasch C and Schuricht D 2017 Phys. Rev. B 95 075143
[45] Li C X, Yang S, Xu J B, and Lin H Q 2023 Phys. Rev. B 107 085130
[46] Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R, and Roos C F 2017 Phys. Rev. Lett. 119 080501
[47] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, and Monroe C 2017 Nature 551 601
[48] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[49] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11
[50] Bergholtz E J, Budich J C, and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[51] Liao Q, Leblanc C, Ren J, Li F, Li Y, Solnyshkov D, Malpuech G, Yao J, and Fu H 2021 Phys. Rev. Lett. 127 107402
[52] Pan J S, Yi W, and Gong J 2021 Commun. Phys. 4 261
[53] Lee T E 2016 Phys. Rev. Lett. 116 133903
[54] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[55] Li T, Zhang Y S, and Yi W 2021 Chin. Phys. Lett. 38 030301
[56] Zhang X, Zhang T, Lu M H, and Chen Y F 2022 Adv. Phys.: X 7 2109431
[57] Lee C H, Li L, and Gong J 2019 Phys. Rev. Lett. 123 016805
[58] Zou D, Chen T, He W, Bao J, Lee C H, Sun H, and Zhang X 2021 Nat. Commun. 12 7201
[59] Ou Z, Wang Y, and Li L 2023 Phys. Rev. B 107 L161404
[60] Chen J, Shi A, Peng Y, Peng P, and Liu J 2024 Chin. Phys. Lett. 41 037103
[61] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S, and Qiu C W 2019 Science 364 170
[62] Cao P C, Li Y, Peng Y G, Qi M, Huang W X, Li P Q, and Zhu X F 2021 Commun. Phys. 4 230
[63] Huang Q K L, Liu Y K, Cao P C, Zhu X F, and Li Y 2023 Chin. Phys. Lett. 40 106601
[64] Mao Y, Zhong P, Lin H, Wang X, and Hu S 2024 Chin. Phys. Lett. 41 070301
[65] Wang X and Xiang T 1997 Phys. Rev. B 56 5061
[66] Jing Y, Dong J J, Zhang Y Y, and Hu Z X 2024 Phys. Rev. Lett. 132 220402
[67] Zhong P G, Pan W, Lin H Q, Wang X Q, and Hu S J 2024 arXiv:2401.15000 [cond-mat.str-el]
[68] Tang W, Verstraete F, and Haegeman J 2023 arXiv:2311.18733 [cond-mat.stat-mech]
[69] Shen R, Guo Y, and Yang S 2023 Phys. Rev. Lett. 130 220401
[70] Lan Z, Liu W, Wu Y, Ye X, Yang Z, Duan C K, Wang Y, and Rong X 2024 Chin. Phys. Lett. 41 050301
[71] Liu Y, Lv S, Yang Y, and Zou H 2023 Chin. Phys. Lett. 40 050502
[72] Liu Y, Lv S T, Meng Y C, Tan Z F, Zhao E H, and Zou H Y 2024 arXiv:2406.18981 [cond-mat.str-el]
[73] Zou H, Cui Y, Wang X, Zhang Z, Yang J, Xu G, Okutani A, Hagiwara M, Matsuda M, Wang G, Mussardo G, Hódsági K, Kormos M, He Z, Kimura S, Yu R, Yu W, Ma J, and Wu J 2021 Phys. Rev. Lett. 127 077201
[74] Zhang Z, Amelin K, Wang X, Zou H Y, Yang J H, Nagel U, Rõõm T, Dey T, Nugroho A A, Lorenz T, Wu J D, and Wang Z 2020 Phys. Rev. B 101 220411
[75] Zhang L 2019 Phys. Rev. Lett. 123 230601
[76] Zhang L and Ding C 2023 Chin. Phys. Lett. 40 010501
[77] del Campo A, Molina-Vilaplana J, and Sonner J 2017 Phys. Rev. D 95 126008
[78] Zou H and Wang W 2023 Chin. Phys. Lett. 40 057501
[79] Liu T and Xia X 2024 Chin. Phys. Lett. 41 017102
[80] Kempkes S N, Slot M R, Freeney S E, Zevenhuizen S J M, Vanmaekelbergh D, Swart I, and Smith C M 2019 Nat. Phys. 15 127
[81] Liu C, Zhou Y, Wang G, Yin Y, Li C, Huang H, Guan D, Li Y, Wang S, Zheng H, Liu C, Han Y, Evans J W, Liu F, and Jia J 2021 Phys. Rev. Lett. 126 176102
[82] Wei B B, Chen S W, Po H C, and Liu R B 2014 Sci. Rep. 4 5202
[83] Zou H, Zhao E, Guan X W, and Liu W V 2019 Phys. Rev. Lett. 122 180401
[84] Zheng Q, Li X, and Zou H 2020 Phys. Rev. B 101 165131
[85] Zhu Z, Huse D A, and White S R 2013 Phys. Rev. Lett. 111 257201
[86] Liu W Y, Gong S S, Li Y B, Poilblanc D, Chen W Q, and Gu Z C 2022 Sci. Bull. 67 1034
[87] Zou H, Yang F, and Ku W 2024 Sci. Chin. Phys. Mech. & Astron. 67 217211
[88] Iliasov A A, Katsnelson M I, and Bagrov A A 2023 arXiv:2310.11497 [cond-mat.supr-con]
Related articles from Frontiers Journals
[1] Zhi-Wen Chang, Wei-Chang Hao, Miguel Bustamante, and Xin Liu. Constructing Hopf Insulator from Geometric Perspective of Hopf Invariant[J]. Chin. Phys. Lett., 2024, 41(3): 100501
[2] Dong-Xue Wang, Jing Fu, Yi Li, Zhen Yao, Shuang Liu, and Bing-Bing Liu. Interception of Layered LP-N and HLP-N at Ambient Conditions by Confined Template[J]. Chin. Phys. Lett., 2024, 41(3): 100501
[3] Yongqiang Li, Chengkun Xing, Ming Gong, Guangcan Guo, and Jianmin Yuan. Heteronuclear Magnetisms with Ultracold Spinor Bosonic Gases in Optical Lattices[J]. Chin. Phys. Lett., 2024, 41(2): 100501
[4] Jin-Yi Wang, Lei-Lei Nian, and Jing-Tao Lü. Engineering Quantum Criticality for Quantum Dot Power Harvesting[J]. Chin. Phys. Lett., 2024, 41(2): 100501
[5] Jingxin Sun, Pengju Zhao, Zhongshu Hu, Shengjie Jin, Ren Liao, Xiong-Jun Liu, and Xuzong Chen. Observation of Two-Dimensional Mott Insulator and $\pi$-Superfluid Quantum Phase Transition in Shaking Optical Lattice[J]. Chin. Phys. Lett., 2023, 40(8): 100501
[6] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 100501
[7] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 100501
[8] Wen-Jia Rao. Machine Learning for Many-Body Localization Transition[J]. Chin. Phys. Lett., 2020, 37(8): 100501
[9] Hui Zhou, Zhao-Kai Li, Heng-Yan Wang, Hong-Wei Chen, Xin-Hua Peng, Jiang-Feng Du. Experimental Observation of the Ground-State Geometric Phase of Three-Spin $XY$ Model[J]. Chin. Phys. Lett., 2016, 33(06): 100501
[10] WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu, KOU Su-Peng. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System[J]. Chin. Phys. Lett., 2012, 29(12): 100501
Viewed
Full text


Abstract