CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High-Temperature Superconductivity in Doped Boron Clathrates |
Liang Ma1,2,3, Lingrui Wang1, Yifang Yuan1*, Haizhong Guo1,2*, and Hongbo Wang4 |
1Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China 2Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China 3Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4State Key Laboratory of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
|
|
Cite this article: |
Liang Ma, Lingrui Wang, Yifang Yuan et al 2023 Chin. Phys. Lett. 40 086201 |
|
|
Abstract The recent discoveries of near-room-temperature superconductivity in clathrate hydrides present compelling evidence for the reliability of theory-orientated conventional superconductivity. Nevertheless, the harsh pressure conditions required to maintain such high $T_{\rm c}$ limit their practical applications. To address this challenge, we conducted extensive first-principles calculations to investigate the doping effect of the recently synthesized LaB$_{8}$ clathrate, intending to design high-temperature superconductors at ambient pressure. Our results demonstrate that these clathrates are highly promising for high-temperature superconductivity owing to the coexistence of rigid boron covalent networks and the tunable density of states at the Fermi level. Remarkably, the predicted $T_{\rm c}$ of BaB$_{8}$ could reach 62 K at ambient pressure, suggesting a significant improvement over the calculated $T_{\rm c}$ of 14 K in LaB$_{8}$. Moreover, further calculations of the formation enthalpies suggest that BaB$_{8}$ could be potentially synthesized under high-temperature and high-pressure conditions. These findings highlight the potential of doped boron clathrates as promising superconductors and provide valuable insights into the design of light-element clathrate superconductors.
|
|
Received: 27 April 2023
Published: 14 July 2023
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
|
|
|
[1] | Kamerlingh O H 1911 Commun. Phys. Lab. Univ. Leiden B 120 261 |
[2] | Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001 |
[3] | Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528 |
[4] | Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, and Eremets M I 2021 Nat. Commun. 12 5075 |
[5] | Liu Y D, Fan Q, Yang J H, Wang L L, Zhang W B, and Yao G 2022 Chin. Phys. Lett. 39 127403 |
[6] | Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B, Long Y, Yu R, Wang L, Ye M, Zhang Z, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S, Liu H, and Jin C 2022 Nat. Commun. 13 2863 |
[7] | Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, Liu G, and Ma Y 2022 Phys. Rev. Lett. 128 167001 |
[8] | Song H, Zhang Z, Cui T, Pickard C, Kresin V, and Duan D 2021 Chin. Phys. Lett. 38 107401 |
[9] | Wang Y Y, Wang K, Sun Y, Ma L, Wang Y C, Zou B, Liu G T, Zhou M, and Wang H B 2022 Chin. Phys. B 31 106201 |
[10] | Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J, and Zhao Z 2020 Chin. Phys. Lett. 37 107401 |
[11] | Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, and Eremets M 2020 Phys. Rep. 856 1 |
[12] | Lv J, Sun Y, Liu H, and Ma Y 2020 Matter Radiat. Extremes 5 068101 |
[13] | Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, and Ma Y 2017 Phys. Rev. Lett. 119 107001 |
[14] | Pickard C J, Errea I, and Eremets M I 2020 Annu. Rev. Condens. Matter Phys. 11 57 |
[15] | Kawaji H, Horie H, Yamanaka S, and Ishikawa M 1995 Phys. Rev. Lett. 74 1427 |
[16] | Connétable D, Timoshevskii V, Masenelli B, Beille J, Marcus J, Barbara B, Saitta A M, Rignanese G M, Mélinon P, Yamanaka S, and Blase X 2003 Phys. Rev. Lett. 91 247001 |
[17] | Yamanaka S, Enishi E, Fukuoka H, and Yasukawa M 2000 Inorg. Chem. 39 56 |
[18] | Li Y, Garcia J, Chen N, Liu L, Li F, Wei Y, Bi S, Cao G, and Feng Z S 2013 J. Appl. Phys. 113 203908 |
[19] | Zhu L, Borstad G M, Liu H, Guńka P A, Guerette M, Dolyniuk J A, Meng Y, Greenberg E, Prakapenka V, Chalou B L, Epshteyn A, Cohen R E, and Strobel T A 2020 Sci. Adv. 6 eaay8361 |
[20] | Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney-Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E, and Strobel T A 2023 Phys. Rev. Res. 5 013012 |
[21] | Lu S Y, Liu H Y, Naumov I I, Meng S, Li Y W, Tse J S, Yang B, and Hemley R J 2016 Phys. Rev. B 93 104509 |
[22] | Ding H, Feng Y, Jiang M, Tian H, Zhong G, Yang C, Chen X, and Lin H 2022 Phys. Rev. B 106 104508 |
[23] | Li X, Yong X, Wu M, Lu S, Liu H, Meng S, Tse J S, and Li Y 2019 J. Phys. Chem. Lett. 10 2554 |
[24] | Hai Y, Tian H, Jiang M, Li W, Zhong G, Yang C, Chen X, and Lin H 2022 Mater. Today Phys. 25 100699 |
[25] | Di Cataldo S, Qulaghasi S, Bachelet G B, and Boeri L 2022 Phys. Rev. B 105 064516 |
[26] | Gai T T, Guo P J, Yang H C, Gao Y, Gao M, and Lu Z Y 2022 Phys. Rev. B 105 224514 |
[27] | Zhang P Y, Li X, Yang X, Wang H, Yao Y, and Liu H Y 2022 Phys. Rev. B 105 094503 |
[28] | Geng N S, Hilleke K P, Zhu L, Wang X Y, Strobel T A, and Zurek E 2023 J. Am. Chem. Soc. 145 1696 |
[29] | Ma L, Yang X, Liu G, Liu H, Yang G, Wang H, Cai J, Zhou M, and Wang H 2021 Phys. Rev. B 104 174112 |
[30] | Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63 |
[31] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[32] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[33] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[34] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[35] | Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106 |
[36] | Baroni S, De Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515 |
[37] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, and Dabo I 2009 J. Phys.: Condens. Matter 21 395502 |
[38] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 |
[39] | Eliashberg G M 1960 Sov. Phys.-JETP 11 696 |
[40] | Carbotte J P 1990 Rev. Mod. Phys. 62 1027 |
[41] | Wang Y C, Lv J, Zhu L, and Ma Y M 2010 Phys. Rev. B 82 094116 |
[42] | Wang Y C, Lv J, Zhu L, and Ma Y M 2012 Comput. Phys. Commun. 183 2063 |
[43] | Calandra M and Mauri F 2008 Phys. Rev. Lett. 101 016401 |
[44] | Sun W H, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G 2016 Sci. Adv. 2 e1600225 |
[45] | Li P, Cui W, Li R, Sun H, Li Y, Yang D, Gong Y, Li H, and Li X 2017 Chin. Phys. Lett. 34 076201 |
[46] | Li X, Huang X, Duan D, Wu G, Liu M, Zhuang Q, Wei S, Huang Y, Li F, Zhou Q, Liu B, and Cui T 2016 RSC Adv. 6 18077 |
[47] | Cerqueira T F, Pailhes S, Debord R, Giordano V M, Viennois R, Shi J, Botti S, and Marques M A 2016 Chem. Mater. 28 3711 |
[48] | Reny E, Yamanaka S, Cros C, and Pouchard M 2000 Chem. Commun. 24 2505 |
[49] | Yuan Z K, Xiong M, and Yu D L 2020 Phys. Lett. A 384 126075 |
[50] | Vlasse M, Slack G, Garbauskas M, Kasper J, and Viala J 1986 J. Solid State Chem. 63 31 |
[51] | Wang J T, Weng H M, Nie S M, Fang Z, Kawazoe Y, and Chen C F 2016 Phys. Rev. Lett. 116 195501 |
[52] | Kroto H W, Heath J R, O'Brien S C, Curl R F, and Smalley R E 1985 Nature 318 162 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|