Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 086201    DOI: 10.1088/0256-307X/40/8/086201
High-Temperature Superconductivity in Doped Boron Clathrates
Liang Ma1,2,3, Lingrui Wang1, Yifang Yuan1*, Haizhong Guo1,2*, and Hongbo Wang4
1Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
2Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
3Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4State Key Laboratory of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Liang Ma, Lingrui Wang, Yifang Yuan et al  2023 Chin. Phys. Lett. 40 086201
Download: PDF(5126KB)   PDF(mobile)(5618KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recent discoveries of near-room-temperature superconductivity in clathrate hydrides present compelling evidence for the reliability of theory-orientated conventional superconductivity. Nevertheless, the harsh pressure conditions required to maintain such high $T_{\rm c}$ limit their practical applications. To address this challenge, we conducted extensive first-principles calculations to investigate the doping effect of the recently synthesized LaB$_{8}$ clathrate, intending to design high-temperature superconductors at ambient pressure. Our results demonstrate that these clathrates are highly promising for high-temperature superconductivity owing to the coexistence of rigid boron covalent networks and the tunable density of states at the Fermi level. Remarkably, the predicted $T_{\rm c}$ of BaB$_{8}$ could reach 62 K at ambient pressure, suggesting a significant improvement over the calculated $T_{\rm c}$ of 14 K in LaB$_{8}$. Moreover, further calculations of the formation enthalpies suggest that BaB$_{8}$ could be potentially synthesized under high-temperature and high-pressure conditions. These findings highlight the potential of doped boron clathrates as promising superconductors and provide valuable insights into the design of light-element clathrate superconductors.
Received: 27 April 2023      Published: 14 July 2023
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.62.Fj (Effects of pressure)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Liang Ma
Lingrui Wang
Yifang Yuan
Haizhong Guo
and Hongbo Wang
[1]Kamerlingh O H 1911 Commun. Phys. Lab. Univ. Leiden B 120 261
[2] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[3] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528
[4] Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, and Eremets M I 2021 Nat. Commun. 12 5075
[5] Liu Y D, Fan Q, Yang J H, Wang L L, Zhang W B, and Yao G 2022 Chin. Phys. Lett. 39 127403
[6] Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B, Long Y, Yu R, Wang L, Ye M, Zhang Z, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S, Liu H, and Jin C 2022 Nat. Commun. 13 2863
[7] Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, Liu G, and Ma Y 2022 Phys. Rev. Lett. 128 167001
[8] Song H, Zhang Z, Cui T, Pickard C, Kresin V, and Duan D 2021 Chin. Phys. Lett. 38 107401
[9] Wang Y Y, Wang K, Sun Y, Ma L, Wang Y C, Zou B, Liu G T, Zhou M, and Wang H B 2022 Chin. Phys. B 31 106201
[10] Hong F, Yang L, Shan P, Yang P, Liu Z, Sun J, Yin Y, Yu X, Cheng J, and Zhao Z 2020 Chin. Phys. Lett. 37 107401
[11] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, and Eremets M 2020 Phys. Rep. 856 1
[12] Lv J, Sun Y, Liu H, and Ma Y 2020 Matter Radiat. Extremes 5 068101
[13] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, and Ma Y 2017 Phys. Rev. Lett. 119 107001
[14] Pickard C J, Errea I, and Eremets M I 2020 Annu. Rev. Condens. Matter Phys. 11 57
[15] Kawaji H, Horie H, Yamanaka S, and Ishikawa M 1995 Phys. Rev. Lett. 74 1427
[16] Connétable D, Timoshevskii V, Masenelli B, Beille J, Marcus J, Barbara B, Saitta A M, Rignanese G M, Mélinon P, Yamanaka S, and Blase X 2003 Phys. Rev. Lett. 91 247001
[17] Yamanaka S, Enishi E, Fukuoka H, and Yasukawa M 2000 Inorg. Chem. 39 56
[18] Li Y, Garcia J, Chen N, Liu L, Li F, Wei Y, Bi S, Cao G, and Feng Z S 2013 J. Appl. Phys. 113 203908
[19] Zhu L, Borstad G M, Liu H, Guńka P A, Guerette M, Dolyniuk J A, Meng Y, Greenberg E, Prakapenka V, Chalou B L, Epshteyn A, Cohen R E, and Strobel T A 2020 Sci. Adv. 6 eaay8361
[20] Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney-Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E, and Strobel T A 2023 Phys. Rev. Res. 5 013012
[21] Lu S Y, Liu H Y, Naumov I I, Meng S, Li Y W, Tse J S, Yang B, and Hemley R J 2016 Phys. Rev. B 93 104509
[22] Ding H, Feng Y, Jiang M, Tian H, Zhong G, Yang C, Chen X, and Lin H 2022 Phys. Rev. B 106 104508
[23] Li X, Yong X, Wu M, Lu S, Liu H, Meng S, Tse J S, and Li Y 2019 J. Phys. Chem. Lett. 10 2554
[24] Hai Y, Tian H, Jiang M, Li W, Zhong G, Yang C, Chen X, and Lin H 2022 Mater. Today Phys. 25 100699
[25] Di Cataldo S, Qulaghasi S, Bachelet G B, and Boeri L 2022 Phys. Rev. B 105 064516
[26] Gai T T, Guo P J, Yang H C, Gao Y, Gao M, and Lu Z Y 2022 Phys. Rev. B 105 224514
[27] Zhang P Y, Li X, Yang X, Wang H, Yao Y, and Liu H Y 2022 Phys. Rev. B 105 094503
[28] Geng N S, Hilleke K P, Zhu L, Wang X Y, Strobel T A, and Zurek E 2023 J. Am. Chem. Soc. 145 1696
[29] Ma L, Yang X, Liu G, Liu H, Yang G, Wang H, Cai J, Zhou M, and Wang H 2021 Phys. Rev. B 104 174112
[30] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Blöchl P E 1994 Phys. Rev. B 50 17953
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106
[36] Baroni S, De Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[37] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, and Dabo I 2009 J. Phys.: Condens. Matter 21 395502
[38] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[39]Eliashberg G M 1960 Sov. Phys.-JETP 11 696
[40] Carbotte J P 1990 Rev. Mod. Phys. 62 1027
[41] Wang Y C, Lv J, Zhu L, and Ma Y M 2010 Phys. Rev. B 82 094116
[42] Wang Y C, Lv J, Zhu L, and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[43] Calandra M and Mauri F 2008 Phys. Rev. Lett. 101 016401
[44] Sun W H, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G 2016 Sci. Adv. 2 e1600225
[45] Li P, Cui W, Li R, Sun H, Li Y, Yang D, Gong Y, Li H, and Li X 2017 Chin. Phys. Lett. 34 076201
[46] Li X, Huang X, Duan D, Wu G, Liu M, Zhuang Q, Wei S, Huang Y, Li F, Zhou Q, Liu B, and Cui T 2016 RSC Adv. 6 18077
[47] Cerqueira T F, Pailhes S, Debord R, Giordano V M, Viennois R, Shi J, Botti S, and Marques M A 2016 Chem. Mater. 28 3711
[48] Reny E, Yamanaka S, Cros C, and Pouchard M 2000 Chem. Commun. 24 2505
[49] Yuan Z K, Xiong M, and Yu D L 2020 Phys. Lett. A 384 126075
[50] Vlasse M, Slack G, Garbauskas M, Kasper J, and Viala J 1986 J. Solid State Chem. 63 31
[51] Wang J T, Weng H M, Nie S M, Fang Z, Kawazoe Y, and Chen C F 2016 Phys. Rev. Lett. 116 195501
[52] Kroto H W, Heath J R, O'Brien S C, Curl R F, and Smalley R E 1985 Nature 318 162
Related articles from Frontiers Journals
[1] Guo Chen, Caoping Niu, Wenming Xia, Jie Zhang, Zhi Zeng, and Xianlong Wang. Route to Stabilize Cubic Gauche Polynitrogen to Ambient Conditions via Surface Saturation by Hydrogen[J]. Chin. Phys. Lett., 2023, 40(8): 086201
[2] Zhenzhen Xu, Jianfu Li, Yanlei Geng, Zhaobin Zhang, Yang Lv, Chao Zhang, Qinglin Wang, and Xiaoli Wang. Regulation of Ionic Bond in Group IIB Transition Metal Iodides[J]. Chin. Phys. Lett., 2023, 40(7): 086201
[3] Huijing Mu, Jin Si, Qingui Yang, Ying Xiang, Haipeng Yang, and Hai-Hu Wen. Temperature-Dependent Anisotropy and Two-Band Superconductivity Revealed by Lower Critical Field in Organic Superconductor $\kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br[J]. Chin. Phys. Lett., 2023, 40(6): 086201
[4] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 086201
[5] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 086201
[6] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 086201
[7] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 086201
[8] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 086201
[9] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 086201
[10] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 086201
[11] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 086201
[12] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[13] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[14] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[15] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 086201
Full text