GENERAL |
|
|
|
|
Stochastic Resonance in a Single-Ion Nonlinear Mechanical Oscillator |
Tai-Hao Cui1,2†, Ji Li3†, Quan Yuan1,2†, Ya-Qi Wei4, Shuang-Qing Dai1,2, Pei-Dong Li1,2, Fei Zhou1,3, Jian-Qi Zhang1*, Liang Chen1,3*, and Mang Feng1,3,5* |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China 4Laboratory of Quantum Science and Engineering, South China University of Technology, Guangzhou 510641, China 5Department of Physics, Zhejiang Normal University, Jinhua 321004, China
|
|
Cite this article: |
Tai-Hao Cui, Ji Li, Quan Yuan et al 2023 Chin. Phys. Lett. 40 080501 |
|
|
Abstract Stochastic resonance is a counterintuitive phenomenon amplifying the weak periodic signal by application of external noise. We demonstrate the enhancement of a weak periodic signal by stochastic resonance in a trapped-ion oscillator when the oscillator is excited to the nonlinear regime and subject to an appropriate noise. Under the full control of the radio-frequency drive voltage, this amplification originates from the nonlinearity due to asymmetry of the trapping potential, which can be described by a forced Duffing oscillator model. Our scheme and results provide an interesting possibility to make use of controllable nonlinearity in the trapped ion, and pave the way toward a practical atomic sensor for sensitively detecting weak periodic signals from real noisy environment.
|
|
Received: 07 April 2023
Published: 04 August 2023
|
|
PACS: |
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
|
|
|
[1] | Paul W 1990 Rev. Mod. Phys. 62 531 |
[2] | Leibfried D, Blatt R, Monroe C, and Wineland D 2003 Rev. Mod. Phys. 75 281 |
[3] | Vahala K, Herrmann M, Knunz S, Batteiger V, Saathoff G, Hänsch T W, and Udem T 2009 Nat. Phys. 5 682 |
[4] | Knünz S, Herrmann M, Batteiger V, Saathoff G, Hänsch T W, Vahala K, and Udem T 2010 Phys. Rev. Lett. 105 013004 |
[5] | Xie Y, Wan W, Wu H Y, Zhou F, Chen L, and Feng M 2013 Phys. Rev. A 87 053402 |
[6] | Drakoudis A, Snollner M, and Werth G 2006 Int. J. Mass Spectrom. 252 61 |
[7] | Makarov A A 1996 Anal. Chem. 68 4257 |
[8] | Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A, and Ozeri R 2010 Phys. Rev. A 82 061402(R) |
[9] | Biercuk M J, Uys H, Britton J W, VanDevender A P, and Bollinger J J 2010 Nat. Nanotechnol. 5 646 |
[10] | Gammaitoni L, Hänggi P, Jung P, and Marchesoni F 1998 Rev. Mod. Phys. 70 223 |
[11] | Benzi R, Sutera A, and Vulpiani A 1981 J. Phys. A 14 L453 |
[12] | Levin J E and Miller J P 1996 Nature 380 165 |
[13] | Douglass J K, Wilkens L, Pantazelou E, and Moss F 1993 Nature 365 337 |
[14] | Li Z P, Li C H, Xiong Z, Xu G Q, Wang Y R, Tian X, Yang X, Liu Z, Zeng Q H, Lin R Z, Li Y, Lee J K W, Ho J S, and Qiu C W 2023 Phys. Rev. Lett. 130 227801 |
[15] | Hibbs A D, Singsaas A L, Jacobs E W, Bulsara A R, Bekkedahl J J, and Moss F 1995 J. Appl. Phys. 77 2582 |
[16] | Rouse R, Han S, and Lukens J E 1995 Appl. Phys. Lett. 66 108 |
[17] | Joshi A and Xiao M 2006 Phys. Rev. A 74 013817 |
[18] | McNamara B, Wiesenfeld K, and Roy R 1988 Phys. Rev. Lett. 60 2626 |
[19] | Mompo E, Ruiz-Garcia M, Carretero M et al. 2021 Phys. Rev. Lett. 121 086805 |
[20] | Shao Z Z, Yin Z Z, Song H L, Liu W, Li X J, Zhu J B, Biermann K, Bonilla L L, Grahn H T, and Zhang Y H 2018 Phys. Rev. Lett. 121 086806 |
[21] | Dodda A, Oberoi A, Sebastian A, Choudhury T H, Redwing J M, and Das S 2020 Nat. Commun. 11 4406 |
[22] | Monifi F, Zhang J, Özdemir S K, Peng B, Liu Y X, Bo F, Nori F, and Yang L 2016 Nat. Photon. 10 399 |
[23] | Chowdhury A, Barbay S, Clerc M G, Robert-Philip I, and Braive R 2017 Phys. Rev. Lett. 119 234101 |
[24] | Badzey R L and Mohanty P 2005 Nature 437 995 |
[25] | House M G 2008 Phys. Rev. A 78 033402 |
[26] | Wan W, Wu H Y, Chen L, Zhou F, Gong S J, and Feng M 2014 Phys. Rev. A 89 063401 |
[27] | Li J, Yan L L, Chen L, Liu Z C, Zhou F, Zhang J Q, Yang W L, and Feng M 2019 Phys. Rev. A 99 063402 |
[28] | Liu Z C, Chen L, Li J, Zhang H, Li C, Zhou F, Su S L, Yan L L, and Feng M 2020 Phys. Rev. A 102 033116 |
[29] | Gammaitoni L, Marchesoni F, Menichella-Saetta E, and Santucci S 1989 Phys. Rev. Lett. 62 349 |
[30] | Jung P and Hänggi P 1991 Phys. Rev. A 44 8032 |
[31] | Cottone F, Vocca H, and Gammaitoni L 2009 Phys. Rev. Lett. 102 080601 |
[32] | Gu X J and Chen C Z 2019 J. Mech. Sci. Technol. 33 1017 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|