Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 077801    DOI: 10.1088/0256-307X/40/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ultra-Broadband Thermal Emitter for Daytime Radiative Cooling with Metal-Insulator-Metal Metamaterials
Huaiyuan Yin and Chunzhen Fan*
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Cite this article:   
Huaiyuan Yin and Chunzhen Fan 2023 Chin. Phys. Lett. 40 077801
Download: PDF(2844KB)   PDF(mobile)(3528KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel thermal emitter with metal-insulator-metal design is proposed to realize efficient daytime radiative cooling. It can achieve ultrahigh absorption of 99.67% in the first atmospheric window and strong reflection of 94.86% in solar band. Analysis on the cooling performance with different real and imaginary parts of refractive index is carried out to provide a guide line in the material choice. As a case study, three inorganic materials are substituted to get enhanced absorption and it is verified that the refractive index matching is desirable to obtain high absorption. In addition, such high emissivity persists under different incident angles in both TE and TM modes. A net cooling power of 96.39 W/m$^{2}$ is achieved in the daytime with the incorporation of convection coefficients. Finally, this thermal emitter achieves an average temperature drop of 5.1 ℃ based on the solution of conduction equation at 300 K. Therefore, our design with an excellent cooling ability can further bolster development in managements of radiative cooling or thermal radiation.
Received: 07 April 2023      Published: 22 June 2023
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  88.05.Sv (Energy use in heating and cooling of residential and commercial buildings)  
  78.40.Kc (Metals, semimetals, and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/077801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/077801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huaiyuan Yin and Chunzhen Fan
[1] Fan S H and Li W 2022 Nat. Photon. 16 182
[2] Ono M, Chen K F, Li W, and Fan S H 2018 Opt. Express 26 A777
[3] Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V, and Troise G 1977 Appl. Energy 3 267
[4] Raman A P, Anoma M A, Zhu L X, Rephaeli E, and Fan S H 2014 Nature 515 540
[5] Kou J L, Jurado Z O, Chen Z, Fan S H, and Minnich A J 2017 ACS Photon. 4 626
[6] Rephaeli E, Raman A P, and Fan S 2013 Nano Lett. 13 1457
[7] Hervé A, Drévillon J, Ezzahri Y, and Joulain K 2018 J. Quant. Spectrosc. Radiat. Transfer 221 155
[8] Liu T J and Takahara J 2017 Opt. Express 25 A612
[9] Jia Z X, Shuai Y, Li M, Guo Y M, and Tan H P 2018 J. Quant. Spectrosc. Radiat. Transfer 207 23
[10] Jia Y L, Wang X X, Yin H Y, Yao H W, Wang J Q, and Fan C Z 2021 Appl. Opt. 60 5699
[11] Wang J H and Fan C Z 2022 Opt. Mater. 134 113131
[12] Cui Y X, Fung K H, Xu J, Ma H, Jin Y, He S, and Fang N X 2012 Nano Lett. 12 1443
[13] Contractor R, D'Aguanno G, and Menyuk C 2018 Opt. Express 26 24031
[14] Jia Y L, Yin H Y, Yao H W, Wang J Q, and Fan C Z 2021 Results Phys. 25 104301
[15] Kim J, Han K, and Jae W H 2017 Sci. Rep. 7 6740
[16] Liu Y N, Weng X L, Zhang P, Li W X, Gong Y, Zhang L, Han T C, Zhou P H, and Deng L J 2021 Chin. Phys. Lett. 38 034201
[17] Hossain M M, Jia B, and Gu M 2015 Adv. Opt. Mater. 3 1047
[18]Xu L J and Huang J P 2023 Transformation Thermotics and Extended Theories inside and outside Metamaterials (Singapore: Springer) p 9
[19]Huang J P 2020 Theoretical Thermotics Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer) pp 231–242
[20] Raman A P, Li W, and Fan S H 2019 Joule 3 2679
[21] Dickinson E J F, Ekström H, and Fontes E 2014 Electrochem. Commun. 40 71
[22] Watt F, Bettiol A, Kan J A, Teo E, and Breese M 2005 Int. J. Nanosci. 4 269
[23] Kong A, Cai B Y, Shi P, and Yuan X C 2019 Opt. Express 27 30102
[24] Wu D, Li C, Xu Z H, Liu Y M, Yu Z Y, Yu L, Chen L, Li R F, Ma R, and Des Y H M 2018 Mater. & Des. 139 104
[25] Yin H Y and Fan C Z 2023 Results Phys. 45 106216
[26] Yin H Y, Yao H W, Jia Y L, Wang J Q, and Fan C Z 2021 J. Phys. D 54 345501
[27] Yao H W, Wang X X, Yin H Y, Jia Y L, Gao Y, Wang J Q, and Fan C Z 2021 Chin. Phys. B 30 064214
[28] Kecebas M A, Menguc M P, Kosar A, and Sendur K 2017 J. Quant. Spectrosc. Radiat. Transfer 198 179
[29] Liu Y T, Son S, Chae D, Jung P H, and Lee H 2020 Sol. Energy Mater. Sol. Cells 213 110561
[30] Huang Z F and Ruan X L 2017 Int. J. Heat Mass Transfer 104 890
[31] Nilsson T M J, Niklasson G A, and Granqvist C G 1992 Sol. Energy Mater. Sol. Cells 28 175
Related articles from Frontiers Journals
[1] Jinsen Han, Kang Lai, Xiaoxiang Yu, Jiahao Chen, Hongli Guo, and Jiayu Dai. Optical Tunable Moiré Excitons in Twisted Hexagonal GaTe Bilayers[J]. Chin. Phys. Lett., 2023, 40(6): 077801
[2] Zhe Shen and Xin-Yu Huang. Optical Pulling Force in Non-Paraxial Bessel Tractor Beam Generated with Polarization-Insensitive Metasurface[J]. Chin. Phys. Lett., 2023, 40(5): 077801
[3] Bokun Lyu, Haojie Li, Qianwen Jia, Guoxia Yang, Fengzhao Cao, Dahe Liu, and Jinwei Shi. Moiré Metasurface with Triple-Band Near-Perfect Chirality[J]. Chin. Phys. Lett., 2023, 40(5): 077801
[4] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 077801
[5] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 077801
[6] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 077801
[7] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 077801
[8] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 077801
[9] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 077801
[10] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 077801
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 077801
[12] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 077801
[13] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 077801
[14] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 077801
[15] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 077801
Viewed
Full text


Abstract