Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 070501    DOI: 10.1088/0256-307X/40/7/070501
GENERAL |
Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials
Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu*
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu 2023 Chin. Phys. Lett. 40 070501
Download: PDF(3268KB)   PDF(mobile)(3297KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We examine the deep learning technique referred to as the physics-informed neural network method for approximating the nonlinear Schrödinger equation under considered parity-time symmetric potentials and for obtaining multifarious soliton solutions. Neural networks to found principally physical information are adopted to figure out the solution to the examined nonlinear partial differential equation and to generate six different types of soliton solutions, which are basic, dipole, tripole, quadruple, pentapole, and sextupole solitons we consider. We make comparisons between the predicted and actual soliton solutions to see whether deep learning is capable of seeking the solution to the partial differential equation described before. We may assess whether physics-informed neural network is capable of effectively providing approximate soliton solutions through the evaluation of squared error between the predicted and numerical results. Moreover, we scrutinize how different activation mechanisms and network architectures impact the capability of selected deep learning technique works. Through the findings we can prove that the neural networks model we established can be utilized to accurately and effectively approximate the nonlinear Schrödinger equation under consideration and to predict the dynamics of soliton solution.
Received: 05 May 2023      Published: 06 July 2023
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/070501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xi-Meng Liu
Zhi-Yang Zhang
and Wen-Jun Liu
[1]Mihalache D 2017 Rom. Rep. Phys. 69 403
[2] Zhang X M, Qin Y H, Ling L M, and Zhao L Z 2021 Chin. Phys. Lett. 38 090201
[3] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[4] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[5] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[6] Longhi S 2015 Opt. Lett. 40 1117
[7] Dong L W and Huang C M 2019 Nonlinear Dyn. 98 1019
[8] Zeng L W and Zeng J H 2019 Nonlinear Dyn. 98 985
[9] Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[10] Li P F, Li R J, and Dai C Q 2021 Opt. Express 29 3193
[11] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[12] Klaiman S, Günther U, and Moiseyev N 2008 Phys. Rev. Lett. 101 080402
[13] Driben R and Malomed B A 2011 Opt. Lett. 36 4323
[14] Zhu X, Yang F, Cao S, Xie J, and He Y 2020 Opt. Express 28 1631
[15] Pathak J, Lu Z, Hunt B R, Girvan M, and Ott E 2017 Chaos 27 121102
[16] Amil P, Soriano M C, and Masoller C 2019 Chaos 29 113111
[17] Panday A, Lee W S, Dutta S, and Jalan S 2021 Chaos 31 031106
[18] Raissi M, Perdikaris P, and Karniadakis G E 2019 J. Comput. Phys. 378 686
[19] Pu J C, Peng W Q, and Chen Y 2021 Wave Motion 107 102823
[20] Zhou Z J and Yan Z Y 2021 Commun. Theor. Phys. 73 105006
[21]Baydin A G, Pearlmutter B A, Radul A A, and Siskind J M 2018 J. Mach. Learn. Res. 18(153) 1
[22] Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202
[23] Stein M 1987 Technometrics 29 143
[24]Golev A, Iliev A, and Kyurkchiev N 2017 Int. J. Sci. Eng. Technol. 4 6
[25] Li P F, Mihalache D, and Malomed B A 2018 Philos. Trans. R. Soc. A 376 20170378
Related articles from Frontiers Journals
[1] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 070501
[2] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 070501
[3] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 070501
[4] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 070501
[5] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 070501
[6] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 070501
[7] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 070501
[8] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 070501
[9] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 070501
[10] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070501
[11] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070501
[12] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 070501
[13] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 070501
[14] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 070501
[15] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 070501
Viewed
Full text


Abstract