Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 070304    DOI: 10.1088/0256-307X/40/7/070304
GENERAL |
Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits
Z. T. Wang1,2, Peng Zhao3*, Z. H. Yang1,2, Ye Tian1, H. F. Yu3,4, and S. P. Zhao1,2,4,5,6*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4Hefei National Laboratory, Hefei 230088, China
5CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
6Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Z. T. Wang, Peng Zhao, Z. H. Yang et al  2023 Chin. Phys. Lett. 40 070304
Download: PDF(2319KB)   PDF(mobile)(2285KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Superconducting transmon qubits with fixed frequencies are widely used in many applications due to their advantages of better coherence and less control lines compared to the frequency tunable qubits. However, any uncontrolled interactions with the qubits such as the two-level systems could lead to adverse impacts, degrading the qubit coherence and inducing crosstalk. To mitigate the detrimental effect from uncontrolled interactions between qubits and defect modes in fixed-frequency transmon qubits, we propose and demonstrate an active approach using an off-resonance microwave drive to dress the qubit and to induce the ac-Stark shift on the qubit frequency. We show experimentally that the qubit frequency can be tuned well away from the defect mode so that the impact on qubit coherence is greatly reduced while maintaining the universal controls of the qubit initialization, readout, and single-qubit gate operations. Our approach provides an effective way for tuning the qubit frequency and suppressing the detrimental effect from the defect modes that happen to be located close to the qubit frequency.
Received: 05 May 2023      Published: 03 July 2023
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  85.25.Cp (Josephson devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/070304       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/070304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Z. T. Wang
Peng Zhao
Z. H. Yang
Ye Tian
H. F. Yu
and S. P. Zhao
[1] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[2] Müller C, Cole J H, and Lisenfeld J 2019 Rep. Prog. Phys. 82 124501
[3] Wenner J, Neeley M, Bialczak R C, Lenander M, Lucero E, ÓConnell A D, Sank D, Wang H, Weides M, Cleland A N, and Martinis J M 2011 Supercond. Sci. Technol. 24 065001
[4] Rosenberg D, Weber S, Conway D, Yost D, Mallek J, Calusine G, Das R, Kim D, Schwartz M, Woods W, Yoder J L, and Oliver W D 2019 arXiv:1906.11146 [quant-ph]
[5] Huang S, Lienhard B, Calusine G, Vepsäläinen A, Braumüller J, Kim D K, Melville A J, Niedzielski B M, Yoder J L, Kannan B, Orlando T P, Gustavsson S, and Oliver W D 2021 PRX Quantum 2 020306
[6] Klimov P V, Kelly J, Chen Z et al. 2018 Phys. Rev. Lett. 121 090502
[7] Burnett J J, Bengtsson A, Scigliuzzo M, Niepce D, Kudra M, Delsing P, and Bylander J 2019 npj Quantum Inf. 5 54
[8] Schlör S, Lisenfeld J, Müller C, Bilmes A, Schneider A, Pappas D P, Ustinov A V, and Weides M 2019 Phys. Rev. Lett. 123 190502
[9] Carroll M, Rosenblatt S, Jurcevic P, Lauer I, and Kandala A 2022 npj Quantum Inf. 8 132
[10] Sheldon S, Sandberg M, Paik H, Abdo B, Chow J M, Steffen M, and Gambetta J M 2017 Appl. Phys. Lett. 111 222601
[11] Kelly J, Barends R, Fowler A G, Megrant A, Jeffrey E, White T C, Sank D, Mutus J Y, Campbell B, Chen Y U, Chen Z, Chiaro B, Dunsworth A, Hoi I C, Neill C, O'Malley P J J, Quintana C, Roushan P, Vainsencher A, Wenner J, Cleland A N, Martinis J M 2015 Nature 519 66
[12] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F, Yu D P 2020 Phys. Rev. Lett. 125 240503
[13] Stehlik J, Zajac D M, Underwood D L, Phung T, Blair J, Carnevale S, Klaus D, Keefe G A 2021 Phys. Rev. Lett. 127 080505
[14] Kandala A, Wei K X, Srinivasan S, Magesan E, Carnevale S, Keefe G A, Klaus D, Dial O, and McKay D C 2021 Phys. Rev. Lett. 127 130501
[15] Place A P M, Rodgers L V H, Mundada P et al. 2021 Nat. Commun. 12 1779
[16] Wang C, Li X, Xu H et al. 2022 npj Quantum Inf. 8 3
[17] Gordon R T, Murray C E, Kurter C et al. 2022 Appl. Phys. Lett. 120 074002
[18] Zhao P, Ma T, Jin Y, and Yu H F 2022 Phys. Rev. A 105 062605
[19]Cohen-Tannoudji C, Dupont-Roc J, and Grynberg G 1998 Atom-Photon Interactions (New York: Wiley)
[20] Liu Y X, Sun C P, and Nori F 2006 Phys. Rev. A 74 052321
[21] Oelsner G, Hübner U, and Il'ichev E 2020 Phys. Rev. B 101 054511
[22] Mitchell B K, Naik R K, Morvan A et al. 2021 Phys. Rev. Lett. 127 200502
[23] Ni Z, Li S, Zhang L et al. 2022 Phys. Rev. Lett. 129 040502
[24] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[25] Li X G, Zhang Y, Yang C, Li Z Y et al. 2021 Appl. Phys. Lett. 119 184003
[26] Li X G, Xu H K, Wang J H, Tang L Z et al. 2023 arXiv:2301.12138 [quant-ph]
[27] Schneider A, Braumüller J, Guo L, Stehle P, Rotzinger H, Marthaler M, Ustinov A V, and Weides M 2018 Phys. Rev. A 97 062334
[28]The output power of the microwave source giving the qubit frequency shift of 20 MHz is close to the maximum value of the instrument.
[29] Seedhouse A E, Hansen I, Laucht A, Yang C H, Dzurak A S, and Saraiva A 2021 Phys. Rev. B 104 235411
[30] Huang Z, Mundada P S, Gyenis A, Schuster D I, Houck A A, and Koch J 2021 Phys. Rev. Appl. 15 034065
[31] Motzoi F, Gambetta J M, Rebentrost P, and Wilhelm F K 2009 Phys. Rev. Lett. 103 110501
[32] Lisenfeld J, Bilmes A, and Ustinov A 2022 Preprint (Version 1) available at https://doi.org/10.21203/rs.3.rs-1815706/v1
[33] Wei K X, Magesan E, Lauer I, Srinivasan S, Bogorin D F, Carnevale S, Keefe G A, Kim Y, Klaus D, Landers W, Sundaresan N, Wang C, Zhang E J, Steffen M, Dial O E, McKay D C, and Kandala A 2021 arXiv:2106.00675 [quant-ph]
[34] Zhao P, Wang R, Hu M J, Ma T, Xu P, Jin Y, and Yu H F 2023 Phys. Rev. Appl. 19 054050
[35] Magesan E, Gambetta J, and Emerson J M 2011 Phys. Rev. Lett. 106 180504
[36] Magesan E, Gambetta J M, Johnson B R, Ryan C A, Chow J M, Merkel S T, Silva M P D, Keefe G A, Rothwell M B, Ohki T A, Ketchen M B, and Steffen M 2012 Phys. Rev. Lett. 109 080505
[37] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[38] Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S, and Wineland D J 2008 Phys. Rev. A 77 012307
[39]We mention that the Stark drive is always off during readout in the present work. However, it can also be applied during readout as demonstrated theoretically.[34]
Related articles from Frontiers Journals
[1] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 070304
[2] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070304
[3] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 070304
[4] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 070304
[5] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 070304
[6] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 070304
[7] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 070304
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 070304
[9] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 070304
[10] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 070304
[11] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 070304
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070304
[13] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 070304
[14] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 070304
[15] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 070304
Viewed
Full text


Abstract