Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 070302    DOI: 10.1088/0256-307X/40/7/070302
GENERAL |
Generation and Control of Shock Waves in Exciton-Polariton Condensates
Jin-Ling Wang1, Wen Wen2, Ji Lin1, and Hui-Jun Li1*
1Institute of Nonlinear Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, China
2College of Science, Hohai University, Nanjing 210098, China
Cite this article:   
Jin-Ling Wang, Wen Wen, Ji Lin et al  2023 Chin. Phys. Lett. 40 070302
Download: PDF(6415KB)   PDF(mobile)(6444KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a scheme to generate and control supersonic shock waves in a non-resonantly incoherent pumped exciton-polariton condensate, and different types of shock waves can be generated. Under conditions of different initial step waves, the ranges of parameters about various shock waves are determined by the initial incidence function and the cross-interaction between the polariton condensate and the reservoir. In addition, shock waves are successfully found by regulating the incoherent pump. In the case of low condensation rate from polariton to condensate, these results are similar to the classical nonlinear Schrödinger equation, and the effect of saturated nonlinearity resulted from cross interaction is equivalent to the self-interaction between polariton condensates. At high condensation rates, profiles of shock waves become symmetrical due to the saturated nonlinearity. Compared to the previous studies in which the shock wave can only be found in the system with repulsive self-interaction (defocusing nonlinearity), we not only discuss the shock wave in the exciton-polariton condensate system with the repulsive self-interaction, but also find the shock wave in the condensates system with attractive self-interaction. Our proposal may provide a simple way to generate and control shock waves in non-resonantly pumped exciton-polariton systems.
Received: 04 April 2023      Published: 10 July 2023
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  96.50.Fm (Planetary bow shocks; interplanetary shocks)  
  91.30.Mv (Strong motions and shock waves)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/070302       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Ling Wang
Wen Wen
Ji Lin
and Hui-Jun Li
[1] Deng H, Weihs G, Santori C, Bloch J, and Yamamoto Y 2002 Science 298 199
[2] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J M J, Marchetti F M, Szymańska M H, André R, Staehli J L, Savona V, Littlewood P B, Deveaud B, and Dang L S 2006 Nature 443 409
[3] Balili R, Hartwell V, Snoke D, Pfeiffer L, and West K 2007 Science 316 1007
[4] Deng H, Haug H, and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[5] Christopoulos S, von Baldassarri H H G, Grundy A J D, Lagoudakis P G, Kavokin A V, Baumberg J J, Christmann G, Butté R, Feltin E, Carlin J F, and Grandjean N 2007 Phys. Rev. Lett. 98 126405
[6] Christmann G, Butté R, Feltin E, Carlin J F, and Grandjean N 2008 Appl. Phys. Lett. 93 051102
[7] Baumberg J J, Kavokin A V, Christopoulos S, Grundy A J D, Butté R, Christmann G, Solnyshkov D D, Malpuech G, von Baldassarri H H G, Feltin E, Carlin J F, and Grandjean N 2008 Phys. Rev. Lett. 101 136409
[8] Li Y, Ma X, Zhai X, Gao M, Dai H, Schumacher S, and Gao T 2022 Nat. Commun. 13 3785
[9] Zhao J X, Su R, Fieramosca A, Zhao W J, Du W J, Liu X, Diederichs C, Sanvitto D, Liew T C H, and Xiong Q H 2021 Nano Lett. 21 3331
[10] Zhang S, Chen J, Shi J, Fu L, Du W, Sui X, Mi Y, Jia Z, Liu F, Shi J, Wu X, Tang N, Zhang Q, and Liu X 2020 ACS Photon. 7 327
[11] Zhang Y L, Jia C Y, and Liang Z X 2022 Chin. Phys. Lett. 39 020501
[12] Jia C Y and Liang Z X 2020 Chin. Phys. Lett. 37 040502
[13] Belounis A M and Kessal S 2017 Can. J. Phys. 95 1234
[14] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299
[15] Sieberer L M, Buchhold M, and Diehl S 2016 Rep. Prog. Phys. 79 096001
[16] Wouters M and Carusotto I 2007 Phys. Rev. Lett. 99 140402
[17] Szymańska M H, Keeling J, and Littlewood P B 2006 Phys. Rev. Lett. 96 230602
[18] Ostrovskaya E A, Abdullaev J, Desyatnikov A S, Fraser M D, and Kivshar Y S 2012 Phys. Rev. A 86 013636
[19] Zhang K, Wen W, Lin J, and Li H J 2022 Front. Phys. 10 798562
[20] Tanese D, Flayac H, Solnyshkov D, Amo A, Lemaître A, Galopin E, Braive R, Senellart P, Sagnes I, Malpuech G, and Bloch J 2013 Nat. Commun. 4 1749
[21] Chen H J, Ren Y, and Wang H 2022 Acta Phys. Sin. 71 056701 (in Chinese)
[22] Sun F X, Niu Z X, Gong Q H, He Q Y, and Zhang W 2019 Phys. Rev. B 100 014517
[23] Ostrovskaya E A, Abdullaev J, Fraser M D, Desyatnikov A S, and Kivshar Y S 2013 Phys. Rev. Lett. 110 170407
[24] Pinsker F and Flayac H 2014 Phys. Rev. Lett. 112 140405
[25] Zhang K, Wen W, Lin J, and Li H J 2021 New J. Phys. 23 033011
[26] El G A and Hoefer M A 2016 Physica D 333 11
[27] Grava T and Klein C 2007 Commun. Pure Appl. Math. 60 1623
[28]Sagdeev R Z 1962 Sov. Phys. Tech. Phys. 6 867
[29] Wan W J, Jia S, and Fleischer J W 2007 Nat. Phys. 3 46
[30] Chanson H 2009 Eur. J. Mech. B 28 191
[31] Dominici L, De Giorgi M, Ballarini D, Cancellieri E, Laussy F, Giacobino E, Bramati A, Gigli G, and Sanvitto D 2013 IEEE Conference on Lasers and Electro-Optics (CLEO: 2013), 9–14 June 2013, San Jose, California, USA, pp 1–2
[32] Gong R Z and Wang D S 2023 Acta Phys. Sin. 72 100503 (in Chinese)
[33] Liu Y Q and Wang D S 2022 Stud. Appl. Math. 149 588
[34] Wang D S, Xu L, and Xuan Z 2022 J. Nonlinear Sci. 32 3
[35] Gong R Z and Wang D S 2022 Physica D 439 133398
[36] Gong R Z and Wang D S 2022 Appl. Math. Lett. 126 107795
[37] Hoefer M and Ablowitz M 2009 Scholarpedia 4 5562
[38] El G A, Geogjaev V V, Gurevich A V, and Krylov A L 1995 Physica D 87 186
[39] Jenkins R 2015 Nonlinearity 28 2131
[40] Kamchatnov A M and Kartashov Y V 2012 Europhys. Lett. 97 10006
[41] Dominici L, Petrov M, Matuszewski M, Ballarini D, De Giorgi M, Colas D, Cancellieri E, Silva F B, Bramati A, Gigli G, Kavokin A, Laussy F, and Sanvitto D 2015 Nat. Commun. 6 8993
[42] Xue Y and Matuszewski M 2014 Phys. Rev. Lett. 112 216401
[43]Yang J 2011 Nonlinear Waves Integrable Nonintegrable Systems 1st edn (Philadephia: SIAM)
[44] Grava T, Klein C, and Pitton G 2018 Proc. R. Soc. A 474 20170458
[45] El G A, Gammal A, Khamis E G, Kraenkel R A, and Kamchatnov A M 2007 Phys. Rev. A 76 053813
Related articles from Frontiers Journals
[1] Fan Zhang and Lan Yin. Hydrodynamics of a Multi-Component Bosonic Superfluid[J]. Chin. Phys. Lett., 2023, 40(6): 070302
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[3] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[4] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 070302
[5] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 070302
[6] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[7] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 070302
[8] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 070302
[9] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 070302
[10] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 070302
[11] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 070302
[12] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 070302
[13] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 070302
[14] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 070302
[15] ZHANG Xiu-Ming, TIAN Chi. Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas[J]. Chin. Phys. Lett., 2015, 32(01): 070302
Viewed
Full text


Abstract