Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 057404    DOI: 10.1088/0256-307X/40/5/057404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity Observed in Tantalum Polyhydride at High Pressure
X. He1,2,3†, C. L. Zhang1,2†, Z. W. Li1,2, S. J. Zhang1, B. S. Min1,2, J. Zhang1,2, K. Lu1,2, J. F. Zhao1,2, L. C. Shi1,2, Y. Peng1,2, X. C. Wang1,2*, S. M. Feng1, J. Song1,2, L. H. Wang4,5*, V. B. Prakapenka6, S. Chariton6, H. Z. Liu7, and C. Q. Jin1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Shanghai Advanced Research in Physical Sciences, Shanghai 201203, China
5Department of Geology, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
6Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA
7Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China
Cite this article:   
X. He, C. L. Zhang, Z. W. Li et al  2023 Chin. Phys. Lett. 40 057404
Download: PDF(1612KB)   PDF(mobile)(1613KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report experimental discovery of tantalum polyhydride superconductor. It was synthesized under high-pressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating techniques. The superconductivity was investigated via resistance measurements at pressures. The highest superconducting transition temperature $T_{\rm c}$ was found to be $\sim$ $30$ K at 197 GPa in the sample that was synthesized at the same pressure with $\sim$ $2000$ K heating. The transitions are shifted to low temperature upon applying magnetic fields that support the superconductivity nature. The upper critical field at zero temperature $\mu_{0}H_{\rm c2}$(0) of the superconducting phase is estimated to be $\sim$ $20$ T that corresponds to Ginzburg–Landau coherent length $\sim$ $40$ Å. Our results suggest that the superconductivity may arise from $I\bar{4}3d$ phase of TaH$_{3}$. It is, for the first time to our best knowledge, experimental realization of superconducting hydrides for the VB group of transition metals.
Received: 20 March 2023      Express Letter Published: 26 April 2023
PACS:  74.25.-q (Properties of superconductors)  
  74.62.Fj (Effects of pressure)  
  74.70.-b (Superconducting materials other than cuprates)  
  62.50.+p  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/057404       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/057404
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
X. He
C. L. Zhang
Z. W. Li
S. J. Zhang
B. S. Min
J. Zhang
K. Lu
J. F. Zhao
L. C. Shi
Y. Peng
X. C. Wang
S. M. Feng
J. Song
L. H. Wang
V. B. Prakapenka
S. Chariton
H. Z. Liu
and C. Q. Jin
[1] Buckman R W 2000 JOM 52 40
[2] Kuzovnikov M A, Antonov V E, Ivanov A S, Hansen T, Savvin S, Kulakov V I, Tkacz M, and Kolesnikov A I 2021 Int. J. Hydrogen Energy 46 20630
[3] Saitoh H, Takagi S, Sato T, and Orimo S 2021 Appl. Sci. 11 6719
[4] Kuzovnikov M A, Antonov V E, Ivanov A S, Hansen T, Savvin S, Kulakov V I, Tkacz M, Kolesnikov A I, and Gurev V M 2020 Phys. Rev. B 102 024113
[5] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, and Shylin S I 2015 Nature 525 73
[6] Semenok D V, Kruglov I A, Savkin I A, Kvashnin A G, and Oganov A R 2020 Curr. Opin. Solid State & Mater. Sci. 24 100808
[7] Hilleke K P and Zurek E 2022 Angew. Chem. Int. Ed. 61 e202207589
[8] Wigner E and Huntington H B 1935 J. Chem. Phys. 3 764
[9] McMahon J M and Ceperley D M 2011 Phys. Rev. Lett. 106 165302
[10]Xu J A and Zhu Z W 1977 Physics 6 296 (in Chinese)
[11] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[12] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528
[13] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[14] Hong F, Yang L X, Shan P F, Yang P T, Liu Z Y, Sun J P, Yin Y Y, Yu X H, Cheng J G, and Zhao Z X 2020 Chin. Phys. Lett. 37 107401
[15] Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, and Eremets M I 2021 Nat. Commun. 12 5075
[16] Snider E, Dasenbrock-Gammon N, McBride R, Wang X, Meyers N, Lawler K V, Zurek E, Salamat A, and Dias R P 2021 Phys. Rev. Lett. 126 117003
[17] Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B S, Long Y W, Yu R C, Wang L H, Ye M Y, Zhang Z S, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S H, Liu H Z, and Jin C Q 2022 Nat. Commun. 13 2863
[18] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T, and Ma Y M 2022 Phys. Rev. Lett. 128 167001
[19] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A, and Oganov A R 2020 Mater. Today 33 36
[20] Chen W H, Semenok D V, Huang X L, Shu H Y, Li X, Duan D F, Cui T, and Oganov A R 2021 Phys. Rev. Lett. 127 117001
[21] Zhang C L, He X, Li Z W, Zhang S J, Min B S, Zhang J, Lu K, Zhao J F, Shi L C, Peng Y, Wang X C, Feng S M, Yu R C, Wang L H, Prakapenka V B, Chariton S, Liu H Z, and Jin C Q 2022 Mater. Today Phys. 27 100826
[22] Zhang C L, He X, Li Z W, Zhang S J, Feng S M, Wang X C, Yu R C, and Jin C Q 2022 Sci. Bull. 67 907
[23] Hong F, Shan P F, Yang L X, Yue B B, Yang P T, Liu Z Y, Sun J P, Dai J H, Yu H, Yin Y Y, Yu X H, Cheng J G, and Zhao Z X 2022 Mater. Today Phys. 22 100596
[24] Kuzovnikov M A and Tkacz M 2019 J. Phys. Chem. C 123 30059
[25] Ying J J, Li X, Greenberg E, Prakapenka V B, Liu H Y, and Struzhkin V V 2019 Phys. Rev. B 99 224504
[26] Jia Y T, He X, Feng S M, Zhang S J, Zhang C L, Ren C W, Wang X C, and Jin C Q 2020 Crystals 10 1116
[27] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[28] Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, and Jin C Q 2009 Phys. Rev. B 80 014506
[29] Prescher C and Prakapenka V B 2015 High Press. Res. 35 223
[30] Kuzovnikov M A, Tkacz M, Meng H, Kapustin D I, and Kulakov V I 2017 Phys. Rev. B 96 134120
[31] Wang H, Tse J S, Tanaka K, Iitaka T, and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463
Related articles from Frontiers Journals
[1] Sheng Ma, Shanshan Yan, Jiali Liu, Yizhe Wang, Yuhang Zhang, Zhen Zhao, Zouyouwei Lu, Dong Li, Yue Liu, Jihu Lu, Hua Zhang, Haitao Yang, Fang Zhou, Zian, Li, Xiaoli Dong, and Zhongxian Zhao. Hydrothermally Obtaining Superconductor Single Crystal of FeSe$_{0.2}$Te$_{0.8}$ without Interstitial Fe[J]. Chin. Phys. Lett., 2023, 40(6): 057404
[2] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 057404
[3] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 057404
[4] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 057404
[5] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 057404
[6] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 057404
[7] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 057404
[8] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 057404
[9] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 057404
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 057404
[11] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 057404
[12] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 057404
[13] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 057404
[14] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 057404
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 057404
Viewed
Full text


Abstract