CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electron-Exciton Coupling in 1T-TiSe$_{2}$ Bilayer |
Li Zhu1†, Wei-Min Zhao1†, Zhen-Yu Jia1, Huiping Li2,3, Xuedong Xie1, Qi-Yuan Li1, Qi-Wei Wang1, Li-Guo Dou1, Ju-Gang Hu1, Yi Zhang1, Wenguang Zhu2,3, Shun-Li Yu1*, Jian-Xin Li1*, and Shao-Chun Li1,4* |
1National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China 2International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 3Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 4Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Li Zhu, Wei-Min Zhao, Zhen-Yu Jia et al 2023 Chin. Phys. Lett. 40 057101 |
|
|
Abstract Excitons in solid state are bosons generated by electron-hole pairs as the Coulomb screening is sufficiently reduced. The exciton condensation can result in exotic physics such as super-fluidity and insulating state. In charge density wave (CDW) state, 1T-TiSe$_{2}$ is one of the candidates that may host the exciton condensation. However, to envision its excitonic effect is still challenging, particularly at the two-dimensional limit, which is applicable to future devices. Here, we realize the epitaxial 1T-TiSe$_{2}$ bilayer, the two-dimensional limit for its $2 \times 2\times 2$ CDW order, to explore the exciton-associated effect. By means of high-resolution scanning tunneling spectroscopy and quasiparticle interference, we discover an unexpected state residing below the conduction band and right within the CDW gap region. As corroborated by our theoretical analysis, this mysterious phenomenon is in good agreement with the electron-exciton coupling. Our study provides a material platform to explore exciton-based electronics and opto-electronics.
|
|
Received: 09 March 2023
Express Letter
Published: 30 March 2023
|
|
PACS: |
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
31.15.aq
|
(Strongly correlated electron systems: generalized tight-binding method)
|
|
|
|
|
[1] | Kohn W 1967 Phys. Rev. Lett. 19 439 |
[2] | Eisenstein J P and MacDonald A H 2004 Nature 432 691 |
[3] | Butov L V 2004 J. Phys.: Condens. Matter 16 R1577 |
[4] | Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M, Zhuang W, Zhang G Y, and Zheng J R 2016 Nat. Commun. 7 12512 |
[5] | Combescot M, Combescot R, and Dubin F 2017 Rep. Prog. Phys. 80 066501 |
[6] | Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G, Reichman D R, and Korn T 2018 Nat. Phys. 14 801 |
[7] | Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, and Xu X 2018 Nat. Nanotechnol. 13 1004 |
[8] | Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, and Urbaszek B 2018 Rev. Mod. Phys. 90 021001 |
[9] | Wang Z F, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, and Mak K F 2019 Nature 574 76 |
[10] | Zenker B, Ihle D, Bronold F X, and Fehske H 2012 Phys. Rev. B 85 121102R |
[11] | Di Salvo F J, Moncton D E, and Waszczak J V 1976 Phys. Rev. B 14 4321 |
[12] | Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kallane M, Mathias S, Kipp L, Rossnagel K, and Bauer M 2011 Nature 471 490 |
[13] | Hedayat H, Sayers C J, Bugini D, Dallera C, Wolverson D, Batten T, Karbassi S, Friedemann S, Cerullo G, van Wezel J, Clark S R, Carpene E, and Como E D 2019 Phys. Rev. Res. 1 023029 |
[14] | Zunger A and Freeman A J 1978 Phys. Rev. B 17 1839 |
[15] | Holt M, Zschack P, Hong H, Chou M Y, and Chiang T C 2001 Phys. Rev. Lett. 86 3799 |
[16] | Kidd T E, Miller T, Chou M Y, and Chiang T C 2002 Phys. Rev. Lett. 88 226402 |
[17] | Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H, and Forro L 2007 Phys. Rev. Lett. 99 146403 |
[18] | Li G, Hu W Z, Qian D, Hsieh D, Hasan M Z, Morosan E, Cava R J, and Wang N L 2007 Phys. Rev. Lett. 99 027404 |
[19] | Ishioka J, Liu Y H, Shimatake K, Kurosawa T, Ichimura K, Toda Y, Oda M, and Tanda S 2010 Phys. Rev. Lett. 105 176401 |
[20] | Weber F, Rosenkranz S, Castellan J P, Osborn R, Karapetrov G, Hott R, Heid R, Bohnen K P, and Alatas A 2011 Phys. Rev. Lett. 107 266401 |
[21] | Sugawara K, Nakata Y, Shimizu R, Han P, Hitosugi T, Sato T, and Takahashi T 2016 ACS Nano 10 1341 |
[22] | Fu Z G, Hu Z Y, Yang Y, Lu Y, Zheng F W, and Zhang P 2016 RSC Adv. 6 76972 |
[23] | Hellgren M, Baima J, Bianco R, Calandra M, Mauri F, and Wirtz L 2017 Phys. Rev. Lett. 119 176401 |
[24] | Kolekar S, Bonilla M, Ma Y J, Diaz H C, and Batzill M 2018 2D Mater. 5 015006 |
[25] | Zhang K W, Yang C L, Lei B, Lu P C, Li X B, Jia Z Y, Song Y H, Sun J, Chen X H, Li J X, and Li S C 2018 Sci. Bull. 63 426 |
[26] | Lian C, Zhang S J, Hu S Q, Guan M X, and Meng S 2020 Nat. Commun. 11 43 |
[27] | Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, van Wezel J, and Abbamonte P 2017 Science 358 1314 |
[28] | Stirling W G, Dorner B, Cheeke J D N, and Revelli J 1976 Solid State Commun. 18 931 |
[29] | Peng J P, Guan J Q, Zhang H M, Song C L, Wang L L, He K, Xue Q K, and Ma X C 2015 Phys. Rev. B 91 121113 |
[30] | Yan S C, Iaia D, Morosan E, Fradkin E, Abbamonte P, and Madhavan V 2017 Phys. Rev. Lett. 118 106405 |
[31] | Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, and Chiang T C 2015 Nat. Commun. 6 8943 |
[32] | Chen P, Chan Y H, Won M H, Fang X Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V, and Chiang T C 2016 Nano Lett. 16 6331 |
[33] | Cuk T, Lu D H, Zhou X J, Shen Z X, Devereaux T P, and Nagaosa N 2005 Phys. Status Solidi B 242 11 |
[34] | Monney G, Monney C, Hildebrand B, Aebi P, and Beck H 2015 Phys. Rev. Lett. 114 086402 |
[35] | Zhao J, Lee K, Li J, Lioi D B, Karapetrov G, Trivedi N, and Chatterjee U 2019 Phys. Rev. B 100 045106 |
[36] | Hong J H, Senga R, Pichler T, and Suenaga K 2020 Phys. Rev. Lett. 124 087401 |
[37] | Li J X and Gong C D 2002 Phys. Rev. B 66 014506 |
[38] | Zenker B, Ihle D, Bronold F X, and Fehske H 2011 Phys. Rev. B 83 235123 |
[39] | Pasquier D and Yazyev O V 2018 Phys. Rev. B 98 235106 |
[40] | Lian C, Ali Z A, and Wong B M 2019 Phys. Rev. B 100 205423 |
[41] | Park S, Mutz N, Schultz T, Blumstengel S, Han A, Aljarb A, Li L J, List-Kratochvil E J W, Amsalem P, and Koch N 2018 2D Mater. 5 025003 |
[42] | Qiu D Y, da Jornada F H, and Louie S G 2017 Nano Lett. 17 4706 |
[43] | Drüppel M, Deilmann T, Krüger P, and Rohlfing M 2017 Nat. Commun. 8 2117 |
[44] | Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schuller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R, and Chernikov A 2017 Nat. Commun. 8 15251 |
[45] | Man M K L, Madeo J, Sahoo C, Xie K, Campbell M, Pareek V, Karmakar A, Wong E L, Al-Mahboob A, Chan N S, Bacon D R, Zhu X, Abdelrasoul M M M, Li X, Heinz T F, Jornada F H D, Cao T, and Dani K M 2021 Sci. Adv. 7 eabg0192 |
[46] | Perfetto E, Sangalli D, Marini A, and Stefanucci G 2019 Phys. Rev. Mater. 3 124601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|