FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Dust-Induced Regulation of Thermal Radiation in Water Droplets |
Chuan-Xin Zhang1*, Tian-Jiao Li2, Liu-Jun Xu3, and Ji-Ping Huang1* |
1Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China 2MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 3Graduate School of China Academy of Engineering Physics, Beijing 100193, China
|
|
Cite this article: |
Chuan-Xin Zhang, Tian-Jiao Li, Liu-Jun Xu et al 2023 Chin. Phys. Lett. 40 054401 |
|
|
Abstract Accurate and fast prediction of thermal radiation properties of materials is crucial for their potential applications. However, some models assume that the media are made up of pure water droplets, which do not account for the increasing deviations caused by volcanic eruptions, pollution, and human activities that exacerbate dust production. The distinct radiation properties of water and dust particles make it challenging to determine the thermal radiation properties of water droplets containing dust particles. To address this issue, we investigate the influence of dust particles on light transmission and energy distribution in water droplets using the multiple sphere T-matrix method. By considering different droplet and dust diameters, volume fractions, and position distributions, we analyze how extinction regulation is achieved in dust-containing water droplets. Our results reveal the significant role of dust particles in the thermal radiation effect and provide insights into the electromagnetic properties of colloidal suspensions. Moreover, the dust-induced reestablishment of energy balance raises concerns about environmental management and climate change. This research highlights the importance of accounting for dust particles in atmospheric models and their potential impact on radiative balance.
|
|
Received: 11 March 2023
Published: 02 May 2023
|
|
PACS: |
44.40.+a
|
(Thermal radiation)
|
|
47.57.J-
|
(Colloidal systems)
|
|
52.25.Os
|
(Emission, absorption, and scattering of electromagnetic radiation ?)
|
|
|
|
|
[1] | Kelly J T, Chuang C C, and Wexler A S 2007 Atmos. Environ. 41 2904 |
[2] | Karydis V A, Kumar P, Barahona D, Sokolik I N, and Nenes A 2011 J. Geophys. Res. 116 D23204 |
[3] | Karydis V A, Tsimpidi A P, Bacer S, Pozzer A, Nenes A, and Lelieveld J 2017 Atmos. Chem. Phys. 17 5601 |
[4] | Gaston C J 2020 Acc. Chem. Res. 53 1005 |
[5] | Li Y Y, Zhou Y X, Marchesoni F, and Ghosh P K 2022 Soft Matter 18 4778 |
[6] | Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer) p 231 |
[7] | Xu L J and Huang J P 2023 Transformation Thermotics and Extended Theories: Inside and Outside Metamaterials (Singapore: Springer) p 9 |
[8] | Yang S, Wang J, Dai G L, Yang F B, and Huang J P 2021 Phys. Rep. 908 1 |
[9] | Tobo Y, Zhang D, Matsuki A, and Iwasaka Y 2010 Proc. Natl. Acad. Sci. USA 107 17905 |
[10] | Lee K, Lee K I, Jeon S Y, and Kim S 2019 Adv. Powder Technol. 30 190 |
[11] | Boje A and Kraft M 2022 J. Aerosol Sci. 159 105895 |
[12] | Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907 |
[13] | Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, and Huang J P 2015 Phys. Rev. Lett. 115 195503 |
[14] | Xu L J, Xu G Q, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 128 145901 |
[15] | Xu L J, Xu G Q, Li J X, Li Y, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 129 155901 |
[16] | Jin P, Liu J R, Xu L J, Wang J, Ouyang X P, Jiang J H, and Huang J P 2023 Proc. Natl. Acad. Sci. USA 120 e2217068120 |
[17] | Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H, and Huang J P 2023 Nat. Rev. Phys. 5 218 |
[18] | Abubakar A A, Yilbas B S, Hussain A Q, Hassan G, and Adukwu J E 2021 Sci. Rep. 11 18361 |
[19] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502 |
[20] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501 |
[21] | Zhang Z R and Huang J P 2022 Chin. Phys. Lett. 39 075201 |
[22] | Wang W J, Liu W, Qi T T, Qiu W Q, Jia H Y, Wang Y J, Shen J, Liu Z, and Thomas J C 2020 Powder Technol. 366 546 |
[23] | Galogahi F M, Zhu Y, An H, and Nguyen N T 2021 Microfluid. Nanofluid. 25 82 |
[24] | Yu Y, Wu Q, Wang X W, and Yang X B 2012 Chin. Phys. Lett. 29 026802 |
[25] | Wu Y, Cheng T, Gu X, Zheng L, Chen H, and Xu H 2014 J. Quant. Spectrosc. Radiat. Transfer 135 9 |
[26] | Tuzet F, Dumont M, Arnaud L, Voisin D, Lamare M, Larue F, Revuelto J, and Picard G 2019 Cryosphere 13 2169 |
[27] | Zheng L J and Wu Y 2021 J. Quant. Spectrosc. Radiat. Transfer 258 107388 |
[28] | Dang S, Brady J, Rel R, Surineni S, O'Shaughnessy C, and McGorty R 2021 Soft Matter 17 8300 |
[29] | Fedoseev A V, Salnikov M V, Vasiliev M M, and Petrov O F 2022 Phys. Rev. E 106 025204 |
[30] | Ouyang Y L, Zhang Z W, Yu QC, He J, Yan G, and Chen J 2020 Chin. Phys. Lett. 37 126301 |
[31] | Yan S S, Wang Y, Gao Z B, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301 |
[32] | Adebiyi A A and Kok J F 2020 Sci. Adv. 6 eaaz9507 |
[33] | Kushnir D, Ruscher C, Bartsch E, Thalmann F, and Hébraud P 2022 Phys. Rev. E 106 034611 |
[34] | Li T J, Gao P, Zhang C X, Yuan Y, Liu D, Shuai Y, and Tan H P 2022 Opt. Lasers Eng. 158 107159 |
[35] | Wang C H, Liu Z Y, Jiang Z Y, and Zhang X X 2022 Phys. Fluids 34 062012 |
[36] | Li H R, Wang S M, Wang X Z, Niu X J, and Li Y 2022 Desalination 538 115897 |
[37] | Wagner R, Benz S, Möhler O, Saathoff H, Schnaiter M, and Schurath U 2005 J. Phys. Chem. A 109 7099 |
[38] | Wang X Y, Niu C J, Qi H, and Ruan L M 2011 Procedia Environ. Sci. 11 1493 |
[39] | Huang Y, Feng C, Hoeniges J, Zhu K, and Pilon L 2020 J. Quant. Spectrosc. Radiat. Transfer 251 107039 |
[40] | Hoeniges J, Zhu K, Welch W, Simsek E, and Pilon L 2021 J. Quant. Spectrosc. Radiat. Transfer 275 107876 |
[41] | Simsek E, Williams M J, Hoeniges J, Zhu K, and Pilon L 2022 Int. J. Heat Mass Transfer 194 123043 |
[42] | Zhang C X, Li T J, Yuan Y, Wang F Q, and Tan H P 2020 Opt. Lasers Eng. 128 106044 |
[43] | Zhang C X, Shi X H, Li T J, Yuan Y, Wang F Q, and Tan H P 2020 J. Quant. Spectrosc. Radiat. Transfer 245 106856 |
[44] | Zhang Q and Thompson J E 2015 J. Atmos. Sol. Terr. Phys. 133 121 |
[45] | Yang P, Gao B C, Wiscombe W J, Mishchenko M I, Platnick S E, Huang H L, Baum B A, Hu Y X, Winker D M, Tsay S C, and Park S K 2002 Appl. Opt. 41 2740 |
[46] | Mishchenko M I 2007 Opt. Express 15 13188 |
[47] | Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) p 1 |
[48] | Mishchenko M I, Liu L, Travis L D, and Lacis A A 2004 J. Quant. Spectrosc. Radiat. Transfer 88 139 |
[49] | Modest M F 2013 Radiative Heat Transfer 3rd edn (New York: Academic Press) p 1 |
[50] | Wu Y, Cheng T, Zheng L, and Chen H 2017 J. Quant. Spectrosc. Radiat. Transfer 195 147 |
[51] | Mishchenko M I, Videen G, and Yang P 2017 Opt. Lett. 42 4873 |
[52] | Wu Y, Cheng T, Zheng L, and Chen H 2016 J. Quant. Spectrosc. Radiat. Transfer 179 139 |
[53] | Mishchenko M I and Hovenier J W 1995 Opt. Lett. 20 1356 |
[54] | Kahnert M, Kanngießer F, Järvinen E, and Schnaiter M 2020 J. Quant. Spectrosc. Radiat. Transfer 254 107177 |
[55] | Muñoz O, Frattin E, Jardiel T, Gómez-Martín J C, Moreno F, Ramos J L, Guirado D, Peiteado M, Caballero A C, Milli J, and Ménard F 2021 Astrophys. J. Suppl. Ser. 256 17 |
[56] | Mackowski D W and Mishchenko M I 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2182 |
[57] | Kanngießer F, Kahnert M, and Kahnert M 2021 Opt. Express 29 34926 |
[58] | Mishchenko M I 2009 J. Quant. Spectrosc. Radiat. Transfer 110 1210 |
[59] | Liu L H, Tan H P, and Tong T W 2002 J. Quant. Spectrosc. Radiat. Transfer 72 747 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|