Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 054401    DOI: 10.1088/0256-307X/40/5/054401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dust-Induced Regulation of Thermal Radiation in Water Droplets
Chuan-Xin Zhang1*, Tian-Jiao Li2, Liu-Jun Xu3, and Ji-Ping Huang1*
1Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
2MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
3Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Cite this article:   
Chuan-Xin Zhang, Tian-Jiao Li, Liu-Jun Xu et al  2023 Chin. Phys. Lett. 40 054401
Download: PDF(1298KB)   PDF(mobile)(1310KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Accurate and fast prediction of thermal radiation properties of materials is crucial for their potential applications. However, some models assume that the media are made up of pure water droplets, which do not account for the increasing deviations caused by volcanic eruptions, pollution, and human activities that exacerbate dust production. The distinct radiation properties of water and dust particles make it challenging to determine the thermal radiation properties of water droplets containing dust particles. To address this issue, we investigate the influence of dust particles on light transmission and energy distribution in water droplets using the multiple sphere T-matrix method. By considering different droplet and dust diameters, volume fractions, and position distributions, we analyze how extinction regulation is achieved in dust-containing water droplets. Our results reveal the significant role of dust particles in the thermal radiation effect and provide insights into the electromagnetic properties of colloidal suspensions. Moreover, the dust-induced reestablishment of energy balance raises concerns about environmental management and climate change. This research highlights the importance of accounting for dust particles in atmospheric models and their potential impact on radiative balance.
Received: 11 March 2023      Published: 02 May 2023
PACS:  44.40.+a (Thermal radiation)  
  47.57.J- (Colloidal systems)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/054401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/054401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan-Xin Zhang
Tian-Jiao Li
Liu-Jun Xu
and Ji-Ping Huang
[1] Kelly J T, Chuang C C, and Wexler A S 2007 Atmos. Environ. 41 2904
[2] Karydis V A, Kumar P, Barahona D, Sokolik I N, and Nenes A 2011 J. Geophys. Res. 116 D23204
[3] Karydis V A, Tsimpidi A P, Bacer S, Pozzer A, Nenes A, and Lelieveld J 2017 Atmos. Chem. Phys. 17 5601
[4] Gaston C J 2020 Acc. Chem. Res. 53 1005
[5] Li Y Y, Zhou Y X, Marchesoni F, and Ghosh P K 2022 Soft Matter 18 4778
[6]Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Singapore: Springer) p 231
[7]Xu L J and Huang J P 2023 Transformation Thermotics and Extended Theories: Inside and Outside Metamaterials (Singapore: Springer) p 9
[8] Yang S, Wang J, Dai G L, Yang F B, and Huang J P 2021 Phys. Rep. 908 1
[9] Tobo Y, Zhang D, Matsuki A, and Iwasaka Y 2010 Proc. Natl. Acad. Sci. USA 107 17905
[10] Lee K, Lee K I, Jeon S Y, and Kim S 2019 Adv. Powder Technol. 30 190
[11] Boje A and Kraft M 2022 J. Aerosol Sci. 159 105895
[12] Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907
[13] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, and Huang J P 2015 Phys. Rev. Lett. 115 195503
[14] Xu L J, Xu G Q, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 128 145901
[15] Xu L J, Xu G Q, Li J X, Li Y, Huang J P, and Qiu C W 2022 Phys. Rev. Lett. 129 155901
[16] Jin P, Liu J R, Xu L J, Wang J, Ouyang X P, Jiang J H, and Huang J P 2023 Proc. Natl. Acad. Sci. USA 120 e2217068120
[17] Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H, and Huang J P 2023 Nat. Rev. Phys. 5 218
[18] Abubakar A A, Yilbas B S, Hussain A Q, Hassan G, and Adukwu J E 2021 Sci. Rep. 11 18361
[19] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502
[20] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[21] Zhang Z R and Huang J P 2022 Chin. Phys. Lett. 39 075201
[22] Wang W J, Liu W, Qi T T, Qiu W Q, Jia H Y, Wang Y J, Shen J, Liu Z, and Thomas J C 2020 Powder Technol. 366 546
[23] Galogahi F M, Zhu Y, An H, and Nguyen N T 2021 Microfluid. Nanofluid. 25 82
[24] Yu Y, Wu Q, Wang X W, and Yang X B 2012 Chin. Phys. Lett. 29 026802
[25] Wu Y, Cheng T, Gu X, Zheng L, Chen H, and Xu H 2014 J. Quant. Spectrosc. Radiat. Transfer 135 9
[26] Tuzet F, Dumont M, Arnaud L, Voisin D, Lamare M, Larue F, Revuelto J, and Picard G 2019 Cryosphere 13 2169
[27] Zheng L J and Wu Y 2021 J. Quant. Spectrosc. Radiat. Transfer 258 107388
[28] Dang S, Brady J, Rel R, Surineni S, O'Shaughnessy C, and McGorty R 2021 Soft Matter 17 8300
[29] Fedoseev A V, Salnikov M V, Vasiliev M M, and Petrov O F 2022 Phys. Rev. E 106 025204
[30] Ouyang Y L, Zhang Z W, Yu QC, He J, Yan G, and Chen J 2020 Chin. Phys. Lett. 37 126301
[31] Yan S S, Wang Y, Gao Z B, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301
[32] Adebiyi A A and Kok J F 2020 Sci. Adv. 6 eaaz9507
[33] Kushnir D, Ruscher C, Bartsch E, Thalmann F, and Hébraud P 2022 Phys. Rev. E 106 034611
[34] Li T J, Gao P, Zhang C X, Yuan Y, Liu D, Shuai Y, and Tan H P 2022 Opt. Lasers Eng. 158 107159
[35] Wang C H, Liu Z Y, Jiang Z Y, and Zhang X X 2022 Phys. Fluids 34 062012
[36] Li H R, Wang S M, Wang X Z, Niu X J, and Li Y 2022 Desalination 538 115897
[37] Wagner R, Benz S, Möhler O, Saathoff H, Schnaiter M, and Schurath U 2005 J. Phys. Chem. A 109 7099
[38] Wang X Y, Niu C J, Qi H, and Ruan L M 2011 Procedia Environ. Sci. 11 1493
[39] Huang Y, Feng C, Hoeniges J, Zhu K, and Pilon L 2020 J. Quant. Spectrosc. Radiat. Transfer 251 107039
[40] Hoeniges J, Zhu K, Welch W, Simsek E, and Pilon L 2021 J. Quant. Spectrosc. Radiat. Transfer 275 107876
[41] Simsek E, Williams M J, Hoeniges J, Zhu K, and Pilon L 2022 Int. J. Heat Mass Transfer 194 123043
[42] Zhang C X, Li T J, Yuan Y, Wang F Q, and Tan H P 2020 Opt. Lasers Eng. 128 106044
[43] Zhang C X, Shi X H, Li T J, Yuan Y, Wang F Q, and Tan H P 2020 J. Quant. Spectrosc. Radiat. Transfer 245 106856
[44] Zhang Q and Thompson J E 2015 J. Atmos. Sol. Terr. Phys. 133 121
[45] Yang P, Gao B C, Wiscombe W J, Mishchenko M I, Platnick S E, Huang H L, Baum B A, Hu Y X, Winker D M, Tsay S C, and Park S K 2002 Appl. Opt. 41 2740
[46] Mishchenko M I 2007 Opt. Express 15 13188
[47]Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) p 1
[48] Mishchenko M I, Liu L, Travis L D, and Lacis A A 2004 J. Quant. Spectrosc. Radiat. Transfer 88 139
[49]Modest M F 2013 Radiative Heat Transfer 3rd edn (New York: Academic Press) p 1
[50] Wu Y, Cheng T, Zheng L, and Chen H 2017 J. Quant. Spectrosc. Radiat. Transfer 195 147
[51] Mishchenko M I, Videen G, and Yang P 2017 Opt. Lett. 42 4873
[52] Wu Y, Cheng T, Zheng L, and Chen H 2016 J. Quant. Spectrosc. Radiat. Transfer 179 139
[53] Mishchenko M I and Hovenier J W 1995 Opt. Lett. 20 1356
[54] Kahnert M, Kanngießer F, Järvinen E, and Schnaiter M 2020 J. Quant. Spectrosc. Radiat. Transfer 254 107177
[55] Muñoz O, Frattin E, Jardiel T, Gómez-Martín J C, Moreno F, Ramos J L, Guirado D, Peiteado M, Caballero A C, Milli J, and Ménard F 2021 Astrophys. J. Suppl. Ser. 256 17
[56] Mackowski D W and Mishchenko M I 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2182
[57] Kanngießer F, Kahnert M, and Kahnert M 2021 Opt. Express 29 34926
[58] Mishchenko M I 2009 J. Quant. Spectrosc. Radiat. Transfer 110 1210
[59] Liu L H, Tan H P, and Tong T W 2002 J. Quant. Spectrosc. Radiat. Transfer 72 747
Related articles from Frontiers Journals
[1] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 054401
[2] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 054401
[3] HUANG Jin-Guo, XUAN Yi-Min, LI Qiang. Narrow-Band Thermal Radiation Based on Microcavity Resonant Effect[J]. Chin. Phys. Lett., 2014, 31(09): 054401
[4] HE Xin, CHANG Sheng-Li, DAI Sui-An, YANG Jun-Cai. Simulation of Radiative Transfer in Nonequilibrium Plasmas Containing N and O Species Based on the Approximate Collision-Radiative Method[J]. Chin. Phys. Lett., 2013, 30(11): 054401
[5] ZHANG Rong-Pei, YU Xi-Jun, ZHU Jiang. Solution of Multimaterial Equilibrium Radiation Diffusion Problems by using the Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2012, 29(11): 054401
[6] FENG Chong, TANG Zhen-An, YU Jun. A Novel CMOS Device Capable of Measuring Near-Field Thermal Radiation[J]. Chin. Phys. Lett., 2012, 29(3): 054401
[7] LI Zhi-Gang**, TANG Da-Wei, LI Tie, DU Jing-Long, . A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator[J]. Chin. Phys. Lett., 2011, 28(5): 054401
[8] ZHAO Yang**, SHANG Wan-Li, XIONG Gang, JIN Feng-Tao, HU Zhi-Min, WEI Min-Xi, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min. Time-Resolved Measurement of Radiatively Heated Iron 2p-3d Transmission Spectra[J]. Chin. Phys. Lett., 2010, 27(11): 054401
[9] LIANG Xin-Gang, HAN Mao-Hua. Experimental Study on Coherence of Thermal Radiation of Thin Film Structures[J]. Chin. Phys. Lett., 2006, 23(5): 054401
[10] YAO Ai-Yun, HOU Wei, LI Hui-Qing, BI Yong, LIN Xue-Chun, GENG Ai-Cong, KONG Yu-Peng, CUI Da-Fu, XU Zu-Yan. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator[J]. Chin. Phys. Lett., 2005, 22(3): 054401
[11] YANG Jia-Min, XU Yan, DING Yao-Nan, DING Yong-Kun, JIANG Shao-En, ZHENG Zhi-Jian, MIAO Wen-Yong. Rosseland Mean Opacity of a High-Z Mixture Plasma[J]. Chin. Phys. Lett., 2003, 20(2): 054401
[12] YANG Jia-Min, XU Yan, DING Yao-Nan, LAI Dong-Xian, DING Yong-Kun, JIANG Shao-En, ZHENG Zhi-Jian, MIAO Wen-Yong. Radiation Heat Waves in Gold Plasma[J]. Chin. Phys. Lett., 2003, 20(1): 054401
[13] Peng Tian, Wenxuan Ge, Songsong Li, Lei Gao, Jianhua Jiang, and Yadong Xu. Near-Field Radiative Heat Transfer between Disordered Multilayer Systems[J]. Chin. Phys. Lett., 2023, 40(6): 054401
Viewed
Full text


Abstract