FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Crystal-Momentum-Resolved Contributions to Harmonics in Laser-Driven Graphene |
Zhaoyang Peng1, Yue Lang1, Yalei Zhu1, Jing Zhao1, Dongwen Zhang1, Zengxiu Zhao1*, and Jianmin Yuan1,2* |
1Department of Physics, National University of Defense Technology, Changsha 410073, China 2Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing 100193, China
|
|
Cite this article: |
Zhaoyang Peng, Yue Lang, Yalei Zhu et al 2023 Chin. Phys. Lett. 40 054203 |
|
|
Abstract We investigate the crystal-momentum-resolved contributions to high-order harmonic generation in laser-driven graphene by semi-conductor Bloch equations in the velocity gauge. It is shown that each harmonic is generated by electrons with the specific initial crystal momentum. The higher harmonics are primarily contributed by the electrons of larger initial crystal momentum because they possess larger instantaneous energies during the intra-band motion. Particularly, we observe circular interference fringes in the crystal-momentum-resolved harmonics spectrum, which result from the inter-cycle interference of harmonic generation. These circular fringes will disappear if the inter-cycle interference is disrupted by the strong dephasing effect. Our findings can help to better analyze the mechanism of high harmonics in graphene.
|
|
Received: 13 March 2023
Published: 21 April 2023
|
|
PACS: |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
|
|
|
[1] | Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 |
[2] | Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 |
[3] | Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, and Reis D A 2011 Nat. Phys. 7 138 |
[4] | Ghimire S and Reis D A 2019 Nat. Phys. 15 10 |
[5] | Kruchinin S Y, Krausz F, and Yakovlev V S 2018 Rev. Mod. Phys. 90 021002 |
[6] | You Y S, Reis D A, and Ghimire S 2017 Nat. Phys. 13 345 |
[7] | Jürgens P, Liewehr B, Kruse B, Peltz C, Engel D, Husakou A, Witting T, Ivanov M, Vrakking M J J, Fennel T, and Mermillod-Blondin A 2020 Nat. Phys. 16 1035 |
[8] | You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam-Mirzaei S, Chini M, Chang Z, and Ghimire S 2017 Nat. Commun. 8 724 |
[9] | Yoshikawa N, Tamaya T, and Tanaka K 2017 Science 356 736 |
[10] | Tamaya T, Ishikawa A, Ogawa T, and Tanaka K 2016 Phys. Rev. Lett. 116 016601 |
[11] | Tancogne-Dejean N and Rubio A 2018 Sci. Adv. 4 eaao5207 |
[12] | Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W, and Huber R 2014 Nat. Photon. 8 119 |
[13] | Ossiander M, Golyari K, Scharl K, Lehnert L, Siegrist F, Bürger J P, Zimin D, Gessner J A, Weidman M, Floss I, Smejkal V, Donsa S, Lemell C, Libisch F, Karpowicz N, Burgdörfer J, Krausz F, and Schultze M 2022 Nat. Commun. 13 1620 |
[14] | Lanin A A, Stepanov E A, Fedotov A B, and Zheltikov A M 2017 Optica 4 516 |
[15] | Li L, Lan P, He L, Cao W, Zhang Q, and Lu P 2020 Phys. Rev. Lett. 124 157403 |
[16] | Luu T T and Wörner H J 2018 Nat. Commun. 9 916 |
[17] | Banks H B, Wu Q, Valovcin D C, Mack S, Gossard A C, Pfeiffer L, Liu R B, and Sherwin M S 2017 Phys. Rev. X 7 041042 |
[18] | Reimann J, Schlauderer S, Schmid C P, Langer F, Baierl S, Kokh K A, Tereshchenko O E, Kimura A, Lange C, Güdde J, Höfer U, and Huber R 2018 Nature 562 396 |
[19] | Heide C, Kobayashi Y, Baykusheva D R, Jain D, Sobota J A, Hashimoto M, Kirchmann P S, Oh S, Heinz T F, Reis D A, and Ghimire S 2022 Nat. Photon. 16 620 |
[20] | Wu M X, Ghimire S, Reis D A, Schafer K J, and Gaarde M B 2015 Phys. Rev. A 91 043839 |
[21] | Wu M X, Browne D A, Schafer K J, and Gaarde M B 2016 Phys. Rev. A 94 063403 |
[22] | Navarrete F, Ciappina M F, and Thumm U 2019 Phys. Rev. A 100 033405 |
[23] | Yu C, Iravani H, and Madsen L B 2020 Phys. Rev. A 102 033105 |
[24] | Liu X, Li Y, Liu D, Zhu X, Zhang X, and Lu P 2021 Phys. Rev. A 103 033104 |
[25] | He Y L, Guo J, Gao F Y, Yang Z J, Zhang S Q, and Liu X S 2021 Phys. Rev. A 104 013104 |
[26] | Castro N A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109 |
[27] | Guan Z, Liu L, Wang G L, Zhao S F, Jiao Z H, and Zhou X X 2020 Chin. Phys. B 29 104206 |
[28] | Heide C, Eckstein T, Boolakee T, Gerner C, Weber H B, Franco I, and Hommelhoff P 2021 Nano Lett. 21 9403 |
[29] | Tamaya T, Ishikawa A, Ogawa T, and Tanaka K 2016 Phys. Rev. B 94 241107 |
[30] | Liu C D, Zheng Y H, Zeng Z N, and Li R X 2018 Phys. Rev. A 97 063412 |
[31] | Feng Y, Shi S, Li J, Ren Y, Zhang X, Chen J, and Du H 2021 Phys. Rev. A 104 043525 |
[32] | Ren Y, Jia L, Zhang Y, Zhang Z, Xue S, Yue S, and Du H 2022 Phys. Rev. A 106 033123 |
[33] | Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M, and Ishikawa K L 2017 Phys. Rev. A 95 043416 |
[34] | Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M, and Lu P 2019 Phys. Rev. Lett. 122 193901 |
[35] | Lang Y, Peng Z, Liu J, Zhao Z, and Ghimire S 2022 Phys. Rev. Lett. 129 167402 |
[36] | Lang Y, Peng Z, and Zhao Z 2022 Chin. Phys. Lett. 39 114201 |
[37] | Liu L, Zhao J, Dong W, Liu J, Huang Y, and Zhao Z 2017 Phys. Rev. A 96 053403 |
[38] | Liu L, Zhao J, Yuan J M, and Zhao Z X 2019 Chin. Phys. B 28 114205 |
[39] | Shevchenko S N, Ashhab S, and Nori F 2010 Phys. Rep. 492 1 |
[40] | Du T Y, Tang D, and Bian X B 2018 Phys. Rev. A 98 063416 |
[41] | Du T Y and Ding S J 2019 Phys. Rev. A 99 033406 |
[42] | Arbó D G, Ishikawa K L, Schiessl K, Persson E, and Burgdörfer J 2010 Phys. Rev. A 81 021403 |
[43] | Arbó D G, Ishikawa K L, Persson E, and Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 24 |
[44] | Peng Q F, Peng Z Y, Lang Y, Zhu Y L, Zhang D W, Lü Z H, and Zhao Z X 2022 Chin. Phys. Lett. 39 053301 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|