Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 054203    DOI: 10.1088/0256-307X/40/5/054203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Crystal-Momentum-Resolved Contributions to Harmonics in Laser-Driven Graphene
Zhaoyang Peng1, Yue Lang1, Yalei Zhu1, Jing Zhao1, Dongwen Zhang1, Zengxiu Zhao1*, and Jianmin Yuan1,2*
1Department of Physics, National University of Defense Technology, Changsha 410073, China
2Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Cite this article:   
Zhaoyang Peng, Yue Lang, Yalei Zhu et al  2023 Chin. Phys. Lett. 40 054203
Download: PDF(2324KB)   PDF(mobile)(2334KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the crystal-momentum-resolved contributions to high-order harmonic generation in laser-driven graphene by semi-conductor Bloch equations in the velocity gauge. It is shown that each harmonic is generated by electrons with the specific initial crystal momentum. The higher harmonics are primarily contributed by the electrons of larger initial crystal momentum because they possess larger instantaneous energies during the intra-band motion. Particularly, we observe circular interference fringes in the crystal-momentum-resolved harmonics spectrum, which result from the inter-cycle interference of harmonic generation. These circular fringes will disappear if the inter-cycle interference is disrupted by the strong dephasing effect. Our findings can help to better analyze the mechanism of high harmonics in graphene.
Received: 13 March 2023      Published: 21 April 2023
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  78.67.Wj (Optical properties of graphene)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/054203       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/054203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhaoyang Peng
Yue Lang
Yalei Zhu
Jing Zhao
Dongwen Zhang
Zengxiu Zhao
and Jianmin Yuan
[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201
[3] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, and Reis D A 2011 Nat. Phys. 7 138
[4] Ghimire S and Reis D A 2019 Nat. Phys. 15 10
[5] Kruchinin S Y, Krausz F, and Yakovlev V S 2018 Rev. Mod. Phys. 90 021002
[6] You Y S, Reis D A, and Ghimire S 2017 Nat. Phys. 13 345
[7] Jürgens P, Liewehr B, Kruse B, Peltz C, Engel D, Husakou A, Witting T, Ivanov M, Vrakking M J J, Fennel T, and Mermillod-Blondin A 2020 Nat. Phys. 16 1035
[8] You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam-Mirzaei S, Chini M, Chang Z, and Ghimire S 2017 Nat. Commun. 8 724
[9] Yoshikawa N, Tamaya T, and Tanaka K 2017 Science 356 736
[10] Tamaya T, Ishikawa A, Ogawa T, and Tanaka K 2016 Phys. Rev. Lett. 116 016601
[11] Tancogne-Dejean N and Rubio A 2018 Sci. Adv. 4 eaao5207
[12] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W, and Huber R 2014 Nat. Photon. 8 119
[13] Ossiander M, Golyari K, Scharl K, Lehnert L, Siegrist F, Bürger J P, Zimin D, Gessner J A, Weidman M, Floss I, Smejkal V, Donsa S, Lemell C, Libisch F, Karpowicz N, Burgdörfer J, Krausz F, and Schultze M 2022 Nat. Commun. 13 1620
[14] Lanin A A, Stepanov E A, Fedotov A B, and Zheltikov A M 2017 Optica 4 516
[15] Li L, Lan P, He L, Cao W, Zhang Q, and Lu P 2020 Phys. Rev. Lett. 124 157403
[16] Luu T T and Wörner H J 2018 Nat. Commun. 9 916
[17] Banks H B, Wu Q, Valovcin D C, Mack S, Gossard A C, Pfeiffer L, Liu R B, and Sherwin M S 2017 Phys. Rev. X 7 041042
[18] Reimann J, Schlauderer S, Schmid C P, Langer F, Baierl S, Kokh K A, Tereshchenko O E, Kimura A, Lange C, Güdde J, Höfer U, and Huber R 2018 Nature 562 396
[19] Heide C, Kobayashi Y, Baykusheva D R, Jain D, Sobota J A, Hashimoto M, Kirchmann P S, Oh S, Heinz T F, Reis D A, and Ghimire S 2022 Nat. Photon. 16 620
[20] Wu M X, Ghimire S, Reis D A, Schafer K J, and Gaarde M B 2015 Phys. Rev. A 91 043839
[21] Wu M X, Browne D A, Schafer K J, and Gaarde M B 2016 Phys. Rev. A 94 063403
[22] Navarrete F, Ciappina M F, and Thumm U 2019 Phys. Rev. A 100 033405
[23] Yu C, Iravani H, and Madsen L B 2020 Phys. Rev. A 102 033105
[24] Liu X, Li Y, Liu D, Zhu X, Zhang X, and Lu P 2021 Phys. Rev. A 103 033104
[25] He Y L, Guo J, Gao F Y, Yang Z J, Zhang S Q, and Liu X S 2021 Phys. Rev. A 104 013104
[26] Castro N A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109
[27] Guan Z, Liu L, Wang G L, Zhao S F, Jiao Z H, and Zhou X X 2020 Chin. Phys. B 29 104206
[28] Heide C, Eckstein T, Boolakee T, Gerner C, Weber H B, Franco I, and Hommelhoff P 2021 Nano Lett. 21 9403
[29] Tamaya T, Ishikawa A, Ogawa T, and Tanaka K 2016 Phys. Rev. B 94 241107
[30] Liu C D, Zheng Y H, Zeng Z N, and Li R X 2018 Phys. Rev. A 97 063412
[31] Feng Y, Shi S, Li J, Ren Y, Zhang X, Chen J, and Du H 2021 Phys. Rev. A 104 043525
[32] Ren Y, Jia L, Zhang Y, Zhang Z, Xue S, Yue S, and Du H 2022 Phys. Rev. A 106 033123
[33] Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M, and Ishikawa K L 2017 Phys. Rev. A 95 043416
[34] Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M, and Lu P 2019 Phys. Rev. Lett. 122 193901
[35] Lang Y, Peng Z, Liu J, Zhao Z, and Ghimire S 2022 Phys. Rev. Lett. 129 167402
[36] Lang Y, Peng Z, and Zhao Z 2022 Chin. Phys. Lett. 39 114201
[37] Liu L, Zhao J, Dong W, Liu J, Huang Y, and Zhao Z 2017 Phys. Rev. A 96 053403
[38] Liu L, Zhao J, Yuan J M, and Zhao Z X 2019 Chin. Phys. B 28 114205
[39] Shevchenko S N, Ashhab S, and Nori F 2010 Phys. Rep. 492 1
[40] Du T Y, Tang D, and Bian X B 2018 Phys. Rev. A 98 063416
[41] Du T Y and Ding S J 2019 Phys. Rev. A 99 033406
[42] Arbó D G, Ishikawa K L, Schiessl K, Persson E, and Burgdörfer J 2010 Phys. Rev. A 81 021403
[43] Arbó D G, Ishikawa K L, Persson E, and Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 24
[44] Peng Q F, Peng Z Y, Lang Y, Zhu Y L, Zhang D W, Lü Z H, and Zhao Z X 2022 Chin. Phys. Lett. 39 053301
Related articles from Frontiers Journals
[1] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 054203
[2] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 054203
[3] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 054203
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 054203
[5] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 054203
[6] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 054203
[7] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 054203
[8] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 054203
[9] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 054203
[10] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 054203
[11] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 054203
[12] Li Zhao, Zhi-Jing Chen, Hai-Bo Sang, Bai-Song Xie. Spatial Characteristics of Thomson Scattering Spectra in Laser and Magnetic Fields[J]. Chin. Phys. Lett., 2019, 36(7): 054203
[13] Jie Shao, Cai-Ping Zhang, Jing-Chao Jia, Jun-Lin Ma, Xiang-Yang Miao. Effect of Carrier Envelope Phase on High-Order Harmonic Generation from Solid[J]. Chin. Phys. Lett., 2019, 36(5): 054203
[14] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 054203
[15] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 054203
Viewed
Full text


Abstract