Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 050501    DOI: 10.1088/0256-307X/40/5/050501
GENERAL |
Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System
Ze-Huan Chen1, Fei-Yu Wang1, Hua Chen1, Jin-Cheng Lu2*, and Chen Wang1*
1Department of Physics, Zhejiang Normal University, Jinhua 321004, China
2Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
Cite this article:   
Ze-Huan Chen, Fei-Yu Wang, Hua Chen et al  2023 Chin. Phys. Lett. 40 050501
Download: PDF(3307KB)   PDF(mobile)(2969KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum heat transport is considered as an indispensable branch of quantum thermodynamics to potentially improve performance of thermodynamic devices. We theoretically propose a dissipative qubit-photon system composed of multiple coupled resonators interacting with a single two-level qubit, to explore the steady-state heat transport by tuning both the inter-resonator photon hopping and the qubit-photon coupling. Specifically in the three-mode case, the dramatic enhancement and suppression of the heat current into the central resonator can be modulated by the corresponding frequency, compared to the currents into two edge resonators. Moreover, fruitful cycle current components are unraveled at weak qubit-photon coupling, which are crucial to exhibit the nonmonotonic feature with increase of the reservoir temperature bias. In the one-dimensional case under the mean-field framework, the influence of the photon hopping on heat transport is analyzed. The steady-state heat current is comparatively enhanced to the single-mode limit at weak qubit-photon coupling, stemming from the nonvanishing mean-field photon excitation parameter and the additional cycle current component. We hope these obtained results may have possible applications in quantum thermodynamic manipulation and energy harvesting.
Received: 16 February 2023      Published: 17 April 2023
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.60.Gg (Quantum transport)  
  42.50.-p (Quantum optics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/050501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Huan Chen
Fei-Yu Wang
Hua Chen
Jin-Cheng Lu
and Chen Wang
[1] Onsager L 1931 Phys. Rev. 37 405
[2] Onsager L 1931 Phys. Rev. 38 2265
[3] Bustamante C, Liphardt J, and Ritort F 2005 Phys. Today 58 43
[4] Kosloff R 2013 Entropy 15 2100
[5] Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1
[6]Kurizki G and Kofman A G 2022 Thermodynamics and Control of Open Quantum Systems (Cambridge: Cambridge University Press)
[7] Yang S, Wang J, Dai G L, Yang F B, and Huang J P 2021 Phys. Rep. 908 1
[8] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[9] Li Y and Li J X 2021 Chin. Phys. Lett. 38 030501
[10] Quan H T, Liu Y X, Sun C P, and Nori F 2007 Phys. Rev. E 76 031105
[11] Scully M O, Chapin K R, Dorfman K E, and Svidzinsky A 2011 Proc. Natl. Acad. Sci. USA 108 15097
[12] Scully M O, Zubairy M S, Agarwal G S, and Walther H 2003 Science 299 862
[13] Levy A and Kosloff R 2012 Phys. Rev. Lett. 108 070604
[14] Entin-Wohlman O, Jiang J H, and Imry Y 2014 Phys. Rev. E 89 012123
[15] Friedman H M, Agarwalla B K, and Segal D 2018 New J. Phys. 20 083026
[16] Yu C S, Guo B Q, and Liu T 2019 Opt. Express 27 6863
[17] Giri S K and Goswami H P 2017 Phys. Rev. E 96 052129
[18] Brandner K and Saito K 2020 Phys. Rev. Lett. 124 040602
[19] Hino Y and Hayakawa H 2021 Phys. Rev. Res. 3 013187
[20] Wang Z, Wang L Q, Chen J Z, Wang C, and Ren J 2022 Front. Phys. 17 13201
[21] Manzano G, Sanchez R, Silva R, Haack G, Brask J B, Brunner N, and Potts P P 2020 Phys. Rev. Res. 2 043302
[22] Pekola J P and Karimi B 2021 Rev. Mod. Phys. 93 041001
[23] Yang C, Wei X R, Sheng J T, and H B W 2020 Nat. Commun. 11 4656
[24] Horowitz J M and Gingrich T R 2020 Nat. Phys. 16 15
[25] Liu J J and Segal D 2021 Phys. Rev. E 103 032138
[26] Lu J C, Wang Z, Peng J B, Wang C, Jiang J H, and Ren J 2022 Phys. Rev. B 105 115428
[27] Liu F and Su S 2020 Phys. Rev. E 101 062144
[28] Lu J C, Wang R Q, Wang C, and Jiang J H 2020 Phys. Rev. B 102 125405
[29] Wang R Q, Wang C, Lu J C, and Jiang J H 2022 Adv. Phys.: X 7 2082317
[30] Aron C, Kulkarni M, and Tureci H E 2014 Phys. Rev. A 90 062305
[31] Kulkarni M, Cotlet O, and Tureci H E 2014 Phys. Rev. B 90 125402
[32] Lu J C, Wang R Q, Ren J, Kulkarni M, and Jiang J H 2019 Phys. Rev. B 99 035129
[33] Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D, and Pekola J P 2018 Nat. Phys. 14 991
[34] Senior J, Gubaydullin A, Karimi B, Peltonen J T, Ankerhold J, and Pekola J P 2020 Commun. Phys. 3 40
[35] Braak D 2011 Phys. Rev. Lett. 107 100401
[36] Chen Q H, Wang C, He S, Liu T, and Wang K L 2012 Phys. Rev. A 86 023822
[37] Wang J H, He J Z, and He X 2011 Phys. Rev. E 84 041127
[38] Wang J H, Wu Z Q, and He J Z 2012 Phys. Rev. E 85 041148
[39] Yamamoto T and Kato T 2021 J. Phys.: Condens. Matter 33 395303
[40] Xu M, Stockburger J T, and Ankerhold J 2021 Phys. Rev. B 103 104304
[41] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, and Gross R 2010 Nat. Phys. 6 772
[42] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, and Semba K 2017 Nat. Phys. 13 44
[43] Naseem M T and Mustecaplioglu O E 2022 Phys. Rev. A 105 012201
[44] Chen Z H, Che H X, Chen Z K, Wang C, and Ren J 2022 Phys. Rev. Res. 4 013152
[45] Wang F Y, Lu J C, Wang Z, Duan L W, Wang C, and Ren J 2022 Front. Phys. 10 3389
[46] Denis Z, Biella A, Favero I, and Ciuti C 2020 Phys. Rev. Lett. 124 083601
[47] Ma K K W 2020 Phys. Rev. A 102 053709
[48] Zhang Y Y, Hu Z X, Fu L B, Luo H G, Pu H, and Zhang X F 2021 Phys. Rev. Lett. 127 063602
[49] Arnardottir K B, Moilanen A J, Strashko A, Torma P, and Keeling J 2020 Phys. Rev. Lett. 125 233603
[50] Li B W, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501
[51] Li N B, Ren J, Wang L, Zhang G, Hanggi P, and Li B W 2012 Rev. Mod. Phys. 84 1045
[52] Greentree A D, Tahan C, Cole J H, and Hollenberg L C L 2006 Nat. Phys. 2 856
[53] Wang C, Wang L Q, and Ren J 2021 Chin. Phys. Lett. 38 010501
[54] Beaudoin F, Gambetta J M, and Blais A 2011 Phys. Rev. A 84 043832
[55] Le Boité A 2020 Adv. Quantum Technol. 3 1900140
[56]Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific)
[57] Chen Q H, Zhang Y Y, Liu T, and Wang K L 2008 Phys. Rev. A 78 051801
[58] Ren J, Zhu J X, Gubernatis J E, Wang C, and B W L 2012 Phys. Rev. B 85 155443
Related articles from Frontiers Journals
[1] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 050501
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 050501
[3] Xiaowei Liu, Jingyuan Guo, Zhibing Li. Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction[J]. Chin. Phys. Lett., 2019, 36(8): 050501
[4] Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan. Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes[J]. Chin. Phys. Lett., 2017, 34(9): 050501
[5] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 050501
[6] Pei-Yan Peng, Chang-Kui Duan. A Maxwell Demon Model Connecting Information and Thermodynamics[J]. Chin. Phys. Lett., 2016, 33(08): 050501
[7] SU Hao, SHI Zhi-Cheng, HE Ji-Zhou. Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(10): 050501
[8] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 050501
[9] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 050501
[10] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 050501
[11] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 050501
[12] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 050501
[13] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 050501
[14] XIAO Yao, HUA Da-Yin. Promotion of Cooperation in a Spatial Public Goods Game with Long Range Learning and Mobility[J]. Chin. Phys. Lett., 2012, 29(11): 050501
[15] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 050501
Viewed
Full text


Abstract