Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 050401    DOI: 10.1088/0256-307X/40/5/050401
GENERAL |
Analogue Black Holes in Reactive Molecules
Ren Zhang1†, Chenwei Lv2†, and Qi Zhou2,3*
1School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
2Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
3Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
Cite this article:   
Ren Zhang, Chenwei Lv, and Qi Zhou 2023 Chin. Phys. Lett. 40 050401
Download: PDF(2314KB)   PDF(mobile)(3019KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that reactive molecules with a unit probability of reaction naturally provide a simulator of some intriguing black hole physics. The unit reaction at the short distance acts as an event horizon and delivers a one-way traffic for matter waves passing through the potential barrier when two molecules interact by high partial-wave scatterings or dipole-dipole interactions. In particular, the scattering rate as a function of the incident energy exhibits a thermal-like distribution near the maximum of the interaction energy in the same manner as a scalar field scatters with the potential barrier outside the event horizon of a black hole. Such a thermal-like scattering can be extracted from the temperature-dependent two-body loss rate measured in experiments on KRb and other molecules.
Received: 27 January 2023      Published: 25 April 2023
PACS:  04.70.-s (Physics of black holes)  
  32.10.f  
  03.65.Ge (Solutions of wave equations: bound states)  
  04.60.m  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/050401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/050401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ren Zhang
Chenwei Lv
and Qi Zhou
[1] Hawking S W 1974 Nature 248 30
[2]Susskind L and Lindesay J 2004 An Introduction to Black Holes, Information and the String Theory Revolution (Singapore: World Scientific) chap 3
[3] Vishveshwara C V 1970 Nature 227 936
[4] Nollert H P 1999 Class. Quantum Grav. 16 R159
[5] Berti E, Cardoso V, and Starinets A O 2009 Class. Quantum Grav. 26 163001
[6] Konoplya R A and Zhidenko A 2011 Rev. Mod. Phys. 83 793
[7] Landau L and Lifshitz E 1977 Quantum Mechanics (Berlin: Pergamon) p 164
[8]Chandrasekhar S and Chandrasekhar S 1998 The Mathematical Theory of Black Holes (Oxford: Oxford University Press) vol 69
[9] Iyer S and Will C M 1987 Phys. Rev. D 35 3621
[10] Unruh W G 1976 Phys. Rev. D 14 870
[11] Mukhanov V and Winitzki S 2007 Introduction to Quantum Effects in Gravity (Cambridge: Cambridge University Press)
[12] Betzios P, Gaddam N, and Papadoulaki O 2016 J. High Energy Phys. 2016(11) 131
[13] Hegde S S, Subramanyan V, Bradlyn B, and Vishveshwara S 2019 Phys. Rev. Lett. 123 156802
[14] Tian Z H, Lin Y H, Fischer U R, and Du J F 2022 Eur. Phys. J. C 82 212
[15] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102
[16] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2017 Phys. Rev. Lett. 119 161101
[17] Unruh W G 1981 Phys. Rev. Lett. 46 1351
[18] Unruh W G 1995 Phys. Rev. D 51 2827
[19] Weinfurtner S, Tedford E W, Penrice M C J, Unruh W G, and Lawrence G A 2011 Phys. Rev. Lett. 106 021302
[20] Michel F and Parentani R 2014 Phys. Rev. D 90 044033
[21] Euvé L P, Michel F, Parentani R, and Rousseaux G 2015 Phys. Rev. D 91 024020
[22] Coutant A and Weinfurtner S 2016 Phys. Rev. D 94 064026
[23] Visser M 1998 Class. Quantum Grav. 15 1767
[24] Giovanazzi S 2005 Phys. Rev. Lett. 94 061302
[25] Rousseaux G, Mathis C, MaOssa P, Philbin T G, and Leonhardt U 2008 New J. Phys. 10 053015
[26] Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A, and Steinhauer J 2010 Phys. Rev. Lett. 105 240401
[27] Steinhauer J 2016 Nat. Phys. 12 959
[28] de Nova J R M, Golubkov K, Kolobov V I, and Steinhauer J 2019 Nature 569 688
[29] Garay L J, Anglin J R, Cirac J I, and Zoller P 2000 Phys. Rev. Lett. 85 4643
[30] Carusotto I, Fagnocchi S, Recati A, Balbinot R, and Fabbri A 2008 New J. Phys. 10 103001
[31] Philbin T G, Kuklewicz C, Robertson S, Hill S, König F, and Leonhardt U 2008 Science 319 1367
[32] Drori J, Rosenberg Y, Bermudez D, Silberberg Y, and Leonhardt U 2019 Phys. Rev. Lett. 122 010404
[33] Sheng C, Liu H, Wang Y, Zhu S N, and Genov D A 2013 Nat. Photon. 7 902
[34] Shi Y H, Yang R Q, Xiang Z, Ge Z Y, Li H, Wang Y Y, Huang K, Tian Y, Song X, Zheng D, Xu K, Cai R G, and Fan H 2021 arXiv:2111.11092 [quant-ph]
[35] Stone M 2013 Class. Quantum Grav. 30 085003
[36] Fertig H A and Halperin B I 1987 Phys. Rev. B 36 7969
[37] Croft J F E and Bohn J L 2014 Phys. Rev. A 89 012714
[38] Nichols M A, Liu Y X, Zhu L, Hu M G, Liu Y, and Ni K K 2022 Phys. Rev. X 12 011049
[39] Hu M G, Liu Y, Grimes D D, Lin Y W, Gheorghe A H, Vexiau R, Bouloufa-Maafa N, Dulieu O, Rosenband T, and Ni K K 2019 Science 366 1111
[40] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, and Ye J 2010 Science 327 853
[41] De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P, and Ye J 2019 Science 363 853
[42] Wang Y, Julienne P, and Greene C H 2013 Few-Body Physics of Ultracold Atoms and Molecules with Long-Range Interactions, in Annual Review of Cold Atoms and Molecules (Singapore: World Scientific) chap 2
[43] Shagam Y, Klein A, Skomorowski W, Yun R, Averbukh V, Koch C P, and Narevicius E 2015 Nat. Chem. 7 921
[44] Subramanyan V, Hegde S S, Vishveshwara S, and Bradlyn B 2021 Ann. Phys. 435 168470 (special issue on Philip W. Anderson)
[45] Gao B 1998 Phys. Rev. A 58 1728
[46] Gao B 1998 Phys. Rev. A 58 4222
[47] Idziaszek Z and Julienne P S 2010 Phys. Rev. Lett. 104 113202
[48] Jachymski K, Krych M, Julienne P S, and Idziaszek Z 2014 Phys. Rev. A 90 042705
[49] He M Y, Lv C W, Lin H Q, and Zhou Q 2020 Sci. Adv. 6 10.1126/sciadv.abd4699
[50] de Miranda M H G, Chotia A, Neyenhuis B, Wang D, Quéméner G, Ospelkaus S, Bohn J L, Ye J, and Jin D S 2011 Nat. Phys. 7 502
[51] Valtolina G, Matsuda K, Tobias W G, Li J R, De Marco L, and Ye J 2020 Nature 588 239
[52] Gregory P D, Frye M D, Blackmore J A, Bridge E M, Sawant R, Hutson J M, and Cornish S L 2019 Nat. Commun. 10 10.1038/s41467-019-11033-y
[53] Matsuda K, Marco L D, Li J R, Tobias W G, Valtolina G, Quéméner G, and Ye J 2020 Science 370 1324
[54] Li J R, Tobias W G, Matsuda K, Miller C, Valtolina G, de Marco L, Wang R R W, Lassablière L, Quéméner G, Bohn J L, and Ye J 2021 Nat. Phys. 17 1144
[55] Son H, Park J J, Lu Y K, Jamison A O, Karman T, and Ketterle W 2022 Science 375 1006
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 050401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 050401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 050401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 050401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 050401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 050401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 050401
[8] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 050401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 050401
[10] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 050401
[11] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 050401
[12] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 050401
[13] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 050401
[14] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 050401
[15] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 050401
Viewed
Full text


Abstract