CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS$_{2}$ Moiré Superlattice |
Fanfan Wu1,2, Lu Li1,2, Qiaoling Xu3,4, Le Liu1,2, Yalong Yuan1,2, Jiaojiao Zhao1,2, Zhiheng Huang1,2, Xiaozhou Zan1,2, Kenji Watanabe5, Takashi Taniguchi6, Dongxia Shi1,2,3, Lede Xian3, Wei Yang1,2,3, Luojun Du1,2*, and Guangyu Zhang1,2,3* |
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China 5Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 6International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
|
|
Cite this article: |
Fanfan Wu, Lu Li, Qiaoling Xu et al 2023 Chin. Phys. Lett. 40 047303 |
|
|
Abstract Moiré superlattices have emerged as a highly controllable quantum platform for exploration of various fascinating phenomena, such as Mott insulator states, ferroelectric order, unconventional superconductivity and orbital ferromagnetism. Although remarkable progress has been achieved, current research in moiré physics has mainly focused on the single species properties, while the coupling between distinct moiré quantum phenomena remains elusive. Here we demonstrate, for the first time, the strong coupling between ferroelectricity and correlated states in a twisted quadrilayer MoS$_{2}$ moiré superlattice, where the twist angles are controlled in sequence to be $\sim$ $57^{\circ}$, $\sim$ $0^{\circ}$, and $\sim$ $-57 ^{\circ}$. Correlated insulator states are unambiguously established at moiré band filling factors $v = 1$, 2, 3 of twisted quadrilayer MoS$_{2}$. Remarkably, ferroelectric order can occur at correlated insulator states and disappears quickly as the moiré band filling deviates from the integer fillings, providing smoking gun evidences of the coupling between ferroelectricity and correlated states. Our results demonstrate the coupling between different moiré quantum properties and will hold great promise for new moiré physics and applications.
|
|
Received: 27 February 2023
Express Letter
Published: 20 March 2023
|
|
PACS: |
73.21.Cd
|
(Superlattices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
|
|
|
[1] | Novoselov K S, Mishchenko A, Carvalho A, and Castro N A H 2016 Science 353 aac9439 |
[2] | Jin C H, Ma E Y, Karni O, Regan E C, Wang F, and Heinz T F 2018 Nat. Nanotechnol. 13 994 |
[3] | Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, and Duan X F 2016 Nat. Rev. Mater. 1 16042 |
[4] | Du L J, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y G, Lau C N, and Sun Z P 2021 Nat. Rev. Phys. 3 193 |
[5] | Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A, and Young A F 2021 Nat. Rev. Mater. 6 201 |
[6] | Chu Y B, Liu L, Yuan Y L, Shen C, Yang R, Shi D X, Yang W, and Zhang G Y 2020 Chin. Phys. B 29 128104 |
[7] | Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686 |
[8] | Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80 |
[9] | Chen G R, Jiang L L, Wu S, Lyu B, Li H Y, Chittari B L, Watanabe K, Taniguchi T, Shi Z W, Jung J, Zhang Y B, and Wang F 2019 Nat. Phys. 15 237 |
[10] | Shen C, Chu Y B, Wu Q S, Li N, Wang S P, Zhao Y C, Tang J, Liu J Y, Tian J P, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D X, Yazyev O V, and Zhang G Y 2020 Nat. Phys. 16 520 |
[11] | Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, and Goldhaber-Gordon D 2019 Science 365 605 |
[12] | Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, and Wang F 2020 Nature 579 56 |
[13] | Shen C, Ying J H, Liu L, Liu J P, Li N, Wang S P, Tang J, Zhao Y C, Chu Y B, Watanabe K, Taniguchi T, Yang R, Shi D X, Qu F M, Lu L, Yang W, and Zhang G Y 2021 Chin. Phys. Lett. 38 047301 |
[14] | Wu S, Zhang Z Y, Watanabe K, Taniguchi T, and Andrei E Y 2021 Nat. Mater. 20 488 |
[15] | Regan E C, Wang D Q, Jin C H, Bakti U M I, Gao B N, Wei X, Zhao S H, Zhao W Y, Zhang Z C, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, and Wang F 2020 Nature 579 359 |
[16] | Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, and Shan J 2020 Nature 587 214 |
[17] | Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L, and Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367 |
[18] | Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S G, Corte-Leon H, Wu Z F, Clark N, Summerfield A, Hashimoto T, Gao Y Z, Wang W D, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal'ko V I, and Gorbachev R 2022 Nat. Nanotechnol. 17 390 |
[19] | Zheng Z R, Ma Q, Bi Z, de la B S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, and Jarillo-Herrero P 2020 Nature 588 71 |
[20] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 |
[21] | Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, and Wang F 2019 Nature 572 215 |
[22] | Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, and Efetov D K 2019 Nature 574 653 |
[23] | Regan E C, Wang D Q, Paik E Y, Zeng Y X, Zhang L, Zhu J H, MacDonald A H, Deng H, and Wang F 2022 Nat. Rev. Mater. 7 778 |
[24] | Seyler K L, Rivera P, Yu H Y, Wilson N P, Ray E L, Mandrus D G, Yan J Q, Yao W, and Xu X D 2019 Nature 567 66 |
[25] | Lin Q, Fang H, Liu Y, Zhang Y, Fischer M, Li J, Hagel J, Brem S, Malic E, Stenger N, Sun Z, Wubs M, and Xiao S 2023 arXiv:2302.01266 [physcis.optics] |
[26] | Yu H Y, Liu G B, Tang J J, Xu X D, and Yao W 2017 Sci. Adv. 3 e1701696 |
[27] | Ma C, Yuan S F, Cheung P, Watanabe K, Taniguchi T, Zhang F, and Xia F N 2022 Nature 604 266 |
[28] | Xian L D, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, and Rubio A 2021 Nat. Commun. 12 5644 |
[29] | Naik M H, Kundu S, Maity I, and Jain M 2020 Phys. Rev. B 102 075413 |
[30] | Wang Q Q, Tang J, Li X M, Tian J P, Liang J, Li N, Ji D P, Xian L D, Guo Y T, Li L, Zhang Q H, Chu Y B, Wei Z, Zhao Y C, Du L J, Yu H, Bai X D, Gu L, Liu K H, Yang W, Yang R, Shi D X, and Zhang G Y 2022 Natl. Sci. Rev. 9 nwac077 |
[31] | Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X R, Hone J, Rubio A, Pasupathy A N, and Dean C R 2020 Nat. Mater. 19 861 |
[32] | Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, and Hone J 2015 Nat. Nanotechnol. 10 534 |
[33] | Xie L, Liao M Z, Wang S P, Yu H, Du L J, Tang J, Zhao J, Zhang J, Chen P, Lu X B, Wang G L, Xie G B, Yang R, Shi D X, and Zhang G Y 2017 Adv. Mater. 29 1702522 |
[34] | Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, and Ye P D 2019 Nat. Electron. 2 580 |
[35] | Guan Z, Hu H, Shen X W, Xiang P H, Zhong N, Chu J H, and Duan C G 2020 Adv. Electron. Mater. 6 1900818 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|