CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Ferroelectric Domain-Wall Transistor |
Yang-Jun Ou, Jie Sun, Yi-Ming Li, and An-Quan Jiang* |
State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai 200433, China |
|
Cite this article: |
Yang-Jun Ou, Jie Sun, Yi-Ming Li et al 2023 Chin. Phys. Lett. 40 038501 |
|
|
Abstract On the basis of novel properties of ferroelectric conducting domain walls, the domain wall nanoelectronics emerges and provides a brand-new dimension for the development of high-density, high-speed and energy-efficient nanodevices. For in-memory computing, three-terminal devices with both logic and memory functions such as transistors purely based on ferroelectric domain walls are urgently required. Here, a prototype ferroelectric domain-wall transistor with a well-designed coplanar electrode geometry is demonstrated on epitaxial BiFeO$_{3}$ thin films. For the logic function, the current switching between on/off states of the transistor depends on the creation or elimination of conducting domain walls between drain and source electrodes. For the data storage, the transistor can maintain nonvolatile on/off states after the write/erase operations, providing an innovative approach for the development of the domain wall nanoelectronics.
|
|
Received: 20 December 2022
Editors' Suggestion
Published: 18 February 2023
|
|
PACS: |
85.50.-n
|
(Dielectric, ferroelectric, and piezoelectric devices)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
|
|
|
[1] | Roy K, Mukhopadhyay S, and Mahmoodi-Meimand H 2003 Proc. IEEE 91 305 |
[2] | Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J, and Ramesh R 2009 Nat. Mater. 8 229 |
[3] | Seidel J, Maksymovych P, Batra Y, Katan A, Yang S Y, He Q, Baddorf A P, Kalinin S V, Yang C H, Yang J C, Chu Y H, Salje E K H, Wormeester H, Salmeron M, and Ramesh R 2010 Phys. Rev. Lett. 105 197603 |
[4] | Farokhipoor S and Noheda B 2011 Phys. Rev. Lett. 107 127601 |
[5] | Maksymovych P, Morozovska A N, Yu P, Eliseev E A, Chu Y H, Ramesh R, Baddorf A P, and Kalinin S V 2012 Nano Lett. 12 209 |
[6] | Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W, and Ramesh R 2010 Nat. Nanotechnol. 5 143 |
[7] | Seidel J, Fu D, Yang S Y, Alarcón-Lladó E, Wu J, Ramesh R, and Ager J W 2011 Phys. Rev. Lett. 107 126805 |
[8] | Yang M M, Bhatnagar A, Luo Z D, and Alexe M 2017 Sci. Rep. 7 43070 |
[9] | He Q, Yeh C H, Yang J C, Singh-Bhalla G, Liang C W, Chiu P W, Catalan G, Martin L W, Chu Y H, Scott J F, and Ramesh R 2012 Phys. Rev. Lett. 108 067203 |
[10] | Domingo N, Farokhipoor S, Santiso J, Noheda B, and Catalan G 2017 J. Phys.: Condens. Matter 29 334003 |
[11] | Lee J H, Fina I, Marti X, Kim Y H, Hesse D, and Alexe M 2014 Adv. Mater. 26 7078 |
[12] | Geng Y N, Lee N, Choi Y J, Cheong S W, and Wu W D 2012 Nano Lett. 12 6055 |
[13] | Sharma P, Zhang Q, Sando D, Lei C H, Liu Y, Li J, Nagarajan V, and Seidel J 2017 Sci. Adv. 3 e1700512 |
[14] | Chaudhary P, Lu H, Lipatov A, Ahmadi Z, Mcconville J P V, Sokolov A, Shield J E, Sinitskii A, Gregg J M, and Gruverman A 2020 Nano Lett. 20 5873 |
[15] | Yang W D, Tian G, Fan H, Zhao Y, Chen H Y, Zhang L Y, Wang Y D, Fan Z, Hou Z P, Chen D Y, Gao J, Zeng M, Lu X, Qin M, Gao X, and Liu J 2022 Adv. Mater. 34 2107711 |
[16] | Chai X J, Jiang J, Zhang Q H, Hou X, Meng F Q, Wang J, Gu L, Zhang D W, and Jiang A Q 2020 Nat. Commun. 11 2811 |
[17] | Sun J, Li Y, Ou Y, Huang Q, Liao X, Chen Z, Chai X, Zhuang X, Zhang W, Wang C, Jiang J, and Jiang A 2022 Adv. Funct. Mater. 32 2207418 |
[18] | Shin H W, Son J H, and Son J Y 2021 Appl. Phys. Lett. 119 122901 |
[19] | Geng W P, He J L, Qiao X J, Niu L Y, Zhao C Q, Xue G, Bi K X, Mei L Y, Wang X J, and Chou X J 2021 IEEE Electron Device Lett. 42 1841 |
[20] | Meier D and Selbach S M 2021 Nat. Rev. Mater. 7 157 |
[21] | Chen G, Lan J, Min T and Xiao J 2021 Chin. Phys. Lett. 38 087701 |
[22] | Zhang W, Wang C, Lian J W, Jiang J and Jiang A Q 2021 Chin. Phys. Lett. 38 017701 |
[23] | Schaab J, Skjærvø S H, Krohns S, Dai X, Holtz M E, Cano A, Lilienblum M, Yan Z, Bourret E, Muller D A, Fiebig M, Selbach S M, and Meier D 2018 Nat. Nanotechnol. 13 1028 |
[24] | Stolichnov I, Iwanowska M, Colla E, Ziegler B, Gaponenko I, Paruch P, Huijben M, Rijnders G, and Setter N 2014 Appl. Phys. Lett. 104 132902 |
[25] | Xiao Y, Shenoy V B, and Bhattacharya K 2005 Phys. Rev. Lett. 95 247603 |
[26] | Catalan G and Scott J F 2009 Adv. Mater. 21 2463 |
[27] | Bai Z L, Cheng X X, Chen D F, Zhang D W, Chen L, Scott J F, Hwang C S, and Jiang A Q 2018 Adv. Funct. Mater. 28 1801725 |
[28] | Cruz M P, Chu Y H, Zhang J X, Yang P L, Zavaliche F, He Q, Shafer P, Chen L Q, and Ramesh R 2007 Phys. Rev. Lett. 99 217601 |
[29] | Chu Y H, Cruz M P, Yang C H, Martin L W, Yang P L, Zhang J X, Lee K, Yu P, Chen L Q, and Ramesh R 2007 Adv. Mater. 19 2662 |
[30] | Jiang J, Bai Z L, Chen Z H, He L, Zhang D W, Zhang Q H, Shi J A, Park M H, Scott J F, Hwang C S, and Jiang A Q 2018 Nat. Mater. 17 49 |
[31] | Khan A I, Keshavarzi A, and Datta S 2020 Nat. Electron. 3 588 |
[32] | Sebastian A, Le G M, Khaddam-Aljameh R, and Eleftheriou E 2020 Nat. Nanotechnol. 15 529 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|