Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 037301    DOI: 10.1088/0256-307X/40/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface
Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong*, and Jia-Cai Nie*
Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao et al  2023 Chin. Phys. Lett. 40 037301
Download: PDF(3623KB)   PDF(mobile)(3911KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The origin of the quantum superconductor to metal transition at zero temperature in two-dimensional superconductors is still an open problem, which has caused intensely discussion. Here, we report the observation of a quantum superconductor-to-metal transition in LaAlO$_{3}$/KTaO$_{3}$ (111) interface, driven by magnetic field. When a small magnetic field perpendicular to the film plane is applied, the residual saturated resistance is observed, indicating the emergence of an anomalous metallic state associated with a failed superconductor. The dependence of saturated resistance on magnetic field at low temperature indicates that the observed metal state is a Bose metal state. From our findings, magnetic field regulating LaAlO$_{3}$/KTaO$_{3}$ (111) interface emerges as a platform to scrutinize the details of the anomalous metallic state in a controllable way.
Received: 16 January 2023      Editors' Suggestion Published: 28 February 2023
PACS:  73.43.Nq (Quantum phase transitions)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  73.40.-c (Electronic transport in interface structures)  
  74.25.N- (Response to electromagnetic fields)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/037301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Tao Zhang
Yu-Jie Qiao
Ting-Na Shao
Qiang Zhao
Xing-Yu Chen
Mei-Hui Chen
Fang-Hui Zhu
Rui-Fen Dou
Hai-Wen Liu
Chang-Min Xiong
and Jia-Cai Nie
[1] Goldman A M and Marković N 1998 Phys. Today 51 39
[2] Jaeger H M, Haviland D B, Orr B G, and Goldman A M 1989 Phys. Rev. B 40 182
[3] Fisher M P 1990 Phys. Rev. Lett. 65 923
[4] Hebard A F and Paalanen M A 1990 Phys. Rev. Lett. 65 927
[5] Yazdani A and Kapitulnik A 1995 Phys. Rev. Lett. 74 3037
[6] Kapitulnik A, Kivelson S A, and Spivak B 2019 Rev. Mod. Phys. 91 011002
[7] Yang C, Liu Y, Wang Y et al. 2019 Science 366 1505
[8] Liu Y, Xu Y, Sun J et al. 2020 Nano Lett. 20 5728
[9] Ephron D, Yazdani A, Kapitulnik A, and Beasley M R 1996 Phys. Rev. Lett. 76 1529
[10] Mason N and Kapitulnik A 1999 Phys. Rev. Lett. 82 5341
[11] Mason N and Kapitulnik A 2002 Phys. Rev. B 65 220505
[12] Qin Y G, Vicente C L, and Yoon J 2006 Phys. Rev. B 73 100505
[13] Breznay N P and Kapitulnik A 2017 Sci. Adv. 3 e1700612
[14] He Z H, Tu H Y, Gao K H, Yu G L, and Li Z Q 2020 Phys. Rev. B 102 224502
[15] Han Z, Allain A, Arjmandi-Tash H, Tikhonov K, Feigel'man M, Sacépé B, and Bouchiat V 2014 Nat. Phys. 10 380
[16] Bøttcher C G L, Nichele F, Kjaergaard M, Suominen H J, Shabani J, Palmstrøm C J, and Marcus C M 2018 Nat. Phys. 14 1138
[17] Tsen A W, Hunt B, Kim Y D et al. 2016 Nat. Phys. 12 208
[18] Saito Y, Kasahara Y, Ye J, Iwasa Y, and Nojima T 2015 Science 350 409
[19] Li L J, Chen C, Watanabe K, Taniguchi T, Zheng Y, Xu Z, Pereira V M, Loh K P, and Neto A H C 2019 Nano Lett. 19 4126
[20] Chen Z Y, Wang B Y, Swartz A G, Yoon H, Hikita Y, Raghu S, and Hwang H Y 2021 npj Quantum Mater. 6 15
[21] Gupta A, Silotia H, Kumari A, Dumen M, Goyal S, Tomar R, Wadehra N, Ayyub P, and Chakraverty S 2022 Adv. Mater. 34 2106481
[22] Chen Z Y, Swartz A G, Yoon H et al. 2018 Nat. Commun. 9 4008
[23] Chen Z, Liu Y, Zhang H et al. 2021 Science 372 721
[24] Chen Z, Liu Z, Sun Y et al. 2021 Phys. Rev. Lett. 126 026802
[25] Liu C J, Yan X, Jin D F et al. 2021 Science 371 716
[26] Ma Y, Niu J, Xing W et al. 2020 Chin. Phys. Lett. 37 117401
[27] Reyren N, Thiel S, Caviglia A D et al. 2007 Science 317 1196
[28] Han Y L, Shen S C, You J et al. 2014 Appl. Phys. Lett. 105 192603
[29] Monteiro A M R V L, Groenendijk D J, Groen I et al. 2017 Phys. Rev. B 96 020504
[30] Tamir I, Benyamini A, Telford E J et al. 2019 Sci. Adv. 5 eaau3826
[31] Xing Y, Yang P, Ge J et al. 2021 Nano Lett. 21 7486
[32] Wang P J, Huang K, Sun J, Hu J J, Fu H L, and Lin X 2019 Rev. Sci. Instrum. 90 023905
[33] Feigel'Man M V, Geshkenbein V B, and Larkin A I 1990 Physica C 167 177
[34] Das D and Doniach S 1999 Phys. Rev. B 60 1261
[35] Das D and Doniach S 2001 Phys. Rev. B 64 134511
Related articles from Frontiers Journals
[1] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 037301
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 037301
[3] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 037301
[4] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 037301
[5] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 037301
[6] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 037301
[7] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 037301
[8] Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin. Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 037301
[9] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 037301
[10] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 037301
[11] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 037301
[12] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, L.-M. Duan. Probe Knots and Hopf Insulators with Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(1): 037301
[13] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 037301
[14] Ling-Xiao Zhao, Xiao-Chun Huang, Yu-Jia Long, Dong Chen, Hui Liang, Zhan-Hai Yang, Mian-Qi Xue, Zhi-An Ren, Hong-Ming Weng, Zhong Fang, Xi Dai, Gen-Fu Chen. Anomalous Magneto-Transport Behavior in Transition Metal Pentatelluride HfTe$_{5}$[J]. Chin. Phys. Lett., 2017, 34(3): 037301
[15] Guang-Tong Liu, Yu-Ying Zhu, Qin Wang, Yuan Pang, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Li Lu, Rui-Rui Du, L. N. Pfeiffer, K. W. West. Observation of an Even–Odd Asymmetric Transport in High Landau Levels[J]. Chin. Phys. Lett., 2017, 34(3): 037301
Viewed
Full text


Abstract