Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 037101    DOI: 10.1088/0256-307X/40/3/037101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies
Miao Xu1†, Changwei Zou1†, Benchao Gong2†, Ke Jia3,4, Shusen Ye1, Zhenqi Hao1, Kai Liu2, Youguo Shi3,4, Zhong-Yi Lu2*, Peng Cai2*, and Yayu Wang1,5
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5Frontier Science Center for Quantum Information, Beijing 100084, China
Cite this article:   
Miao Xu, Changwei Zou, Benchao Gong et al  2023 Chin. Phys. Lett. 40 037101
Download: PDF(12950KB)   PDF(mobile)(12957KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic evolution of Mott insulators into exotic correlated phases remains puzzling, because of electron interaction and inhomogeneity. Introduction of individual imperfections in Mott insulators could help capture the main mechanism and serve as a basis to understand the evolution. Here we utilize scanning tunneling microscopy to probe the atomic scale electronic structure of the spin-orbit-coupling assisted Mott insulator Sr$_{3}$Ir$_{2}$O$_{7}$. It is found that the tunneling spectra exhibit a homogeneous Mott gap in defect-free regions, but near the oxygen vacancy in the rotated IrO$_{2}$ plane the local Mott gap size is significantly enhanced. We attribute the enhanced gap to the locally reduced hopping integral between the 5$d$ electrons of neighboring Ir sites via the bridging planar oxygen $p$ orbitals. Such bridging defects have a dramatic influence on local bandwidth, thus provide a new way to manipulate the strength of Mottness in a Mott insulator.
Received: 12 December 2022      Published: 28 February 2023
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/037101       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/037101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Miao Xu
Changwei Zou
Benchao Gong
Ke Jia
Shusen Ye
Zhenqi Hao
Kai Liu
Youguo Shi
Zhong-Yi Lu
Peng Cai
and Yayu Wang
[1] Hubbard J 1963 Proc. R. Soc. A 276 238
[2] Hubbard J 1964 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 84 455
[3] Gebhard F 1997 Metal—Insulator Transitions: Models and Methods. Springer Tracts in Modern Physics vol 137 pp 1–48
[4] McWhan D B, Rice T M, and Remeika J P 1969 Phys. Rev. Lett. 23 1384
[5] Hanaguri T, Lupien C, Kohsaka Y, Lee D H, Azuma M, Takano M, Takagi H, and Davis J 2004 Nature 430 1001
[6] da Silva Neto E H, Aynajian P, Frano A et al. 2014 Science 343 393
[7] Cai P, Ruan W, Peng Y, Ye C, Li X, Hao Z, Zhou X, Lee D H, and Wang Y 2016 Nat. Phys. 12 1047
[8] Shimura T, Inaguma Y, Nakamura T, Itoh M, and Morii Y 1995 Phys. Rev. B 52 9143
[9] Nakatsuji S and Maeno Y 2000 Phys. Rev. Lett. 84 2666
[10] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, and Johnston D C 1994 Phys. Rev. B 49 9198
[11] Dhital C, Khadka S, Yamani Z et al. 2012 Phys. Rev. B 86 100401
[12] Kim B J, Jin H, Moon S J et al. 2008 Phys. Rev. Lett. 101 076402
[13] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, and Arima T 2009 Science 323 1329
[14] Kim Y K, Krupin O, Denlinger J, Bostwick A, Rotenberg E, Zhao Q, Mitchell J, Allen J, and Kim B 2014 Science 345 187
[15] Kim J, Casa D, Upton M et al. 2012 Phys. Rev. Lett. 108 177003
[16] Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502
[17] Ruan W, Hu C, Zhao J et al. 2016 Sci. Bull. 61 1826
[18] Weber C, Yee C, Haule K, and Kotliar G 2012 Europhys. Lett. 100 37001
[19] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[20]Roy S B 2019 Mott Insulators (Bristol: IOP Publishing)
[21] Okada Y, Walkup D, Lin H et al. 2013 Nat. Mater. 12 707
[22] Sun Z X, Guevara J M, Sykora S, Pärschke E M, Manna K, Maljuk A, Wurmehl S, van den Brink J, Büchner B, and Hess C 2021 Phys. Rev. Res. 3 023075
[23] Hu L L, Yang M, Wu Y Let al. 2019 Phys. Rev. B 99 094307
[24] Manna K, Aslan-Cansever G, Maljuk A, Wurmehl S, Seiro S, and Büchner B 2020 J. Cryst. Growth 540 125657
[25] Battisti I, Fedoseev V, Bastiaans K M, De La T A, Perry R S, Baumberger F, and Allan M P 2017 Phys. Rev. B 95 235141
[26] Ye C, Cai P, Yu R, Zhou X, Ruan W, Liu Q, Jin C, and Wang Y 2013 Nat. Commun. 4 1365
[27] Dai J X, Calleja E, Cao G, and McElroy K 2014 Phys. Rev. B 90 041102
[28] Battisti I, Bastiaans K M, Fedoseev V et al. 2017 Nat. Phys. 13 21
[29] Zhao H, Manna S, Porter Z, Chen X, Uzdejczyk A, Moodera J, Wang Z, Wilson S D, and Zeljkovic I 2019 Nat. Phys. 15 1267
[30] Wang Z, Walkup D, Maximenko Y, Zhou W, Hogan T, Wang Z, Wilson S D, and Madhavan V 2019 npj Quantum Mater. 4 43
[31] Kim B, Liu P, and Franchini C 2017 Phys. Rev. B 95 024406
[32] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Park H J, Sohn C H, Jeong D, Cao G, Kim K, Moon S, Jin H, Cho D Y, and Noh T 2014 Phys. Rev. B 89 155115
[35] Wang Q, Cao Y, Waugh J, Park S, Qi T, Korneta O, Cao G, and Dessau D 2013 Phys. Rev. B 87 245109
[36] Li H W, Ye S S, Zhao J F, Jin C Q, and Wang Y Y 2021 Sci. Bull. 66 1395
[37] Tokura Y and Nagaosa N 2000 Science 288 462
[38] Moretti Sala M, Rossi M, Al-Zein A et al. 2014 Phys. Rev. B 90 085126
[39] Moon S J, Jin H, Kim K W et al. 2008 Phys. Rev. Lett. 101 226402
[40] Zeb M A and Kee H Y 2012 Phys. Rev. B 86 085149
[41] Kim J, Said A, Casa D, Upton M, Gog T, Daghofer M, Jackeli G, Van Den Brink J, Khaliullin G, and Kim B 2012 Phys. Rev. Lett. 109 157402
[42] Fujiyama S, Ohashi K, Ohsumi H, Sugimoto K, Takayama T, Komesu T, Takata M, Arima T, and Takagi H 2012 Phys. Rev. B 86 174414
[43] King P D C, Takayama T, Tamai A et al. 2013 Phys. Rev. B 87 241106
[44] Nagai I, Yoshida Y, Ikeda S, Matsuhata H, Kito H, and Kosaka M 2007 J. Phys.: Condens. Matter 19 136214
[45] Han X J, Liu Y, Liu Z Y, Li X, Chen J, Liao H J, Xie Z Y, Normand B, and Xiang T 2016 New J. Phys. 18 103004
[46] Golor M, Reckling T, Classen L, Scherer M M, and Wessel S 2014 Phys. Rev. B 90 195131
[47] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[48] Weber C, Haule K, and Kotliar G 2010 Nat. Phys. 6 574
[49] Yee C H and Kotliar G 2014 Phys. Rev. B 89 094517
[50] Leshen J, Kavai M, Giannakis I, Kaneko Y, Tokura Y, Mukherjee S, Lee W C, and Aynajian P 2019 Commun. Phys. 2 36
[51] Gunkel F, Christensen D V, Chen Y Z, and Pryds N 2020 Appl. Phys. Lett. 116 120505
[52] Blöchl P E 1994 Phys. Rev. B 50 17953
[53] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 037101
[2] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 037101
[3] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 037101
[4] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 037101
[5] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 037101
[6] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 037101
[7] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 037101
[8] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 037101
[9] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 037101
[10] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 037101
[11] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 037101
[12] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 037101
[13] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 037101
[14] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 037101
[15] Guoxiong Tang, Libin Wen, Hui Xing, Wenjie Liu, Jin Peng, Yu Wang, Yupeng Li, Baijiang Lv, Yusen Yang, Chao Yao, Yueshen Wu, Hong Sun, Zhu-An Xu, Zhiqiang Mao, and Ying Liu. Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance[J]. Chin. Phys. Lett., 2020, 37(10): 037101
Viewed
Full text


Abstract