Chin. Phys. Lett.  2023, Vol. 40 Issue (3): 034201    DOI: 10.1088/0256-307X/40/3/034201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension
Bo Peng1†, Shuo Yan1†, Dali Cheng2, Danying Yu1, Zhanwei Liu1, Vladislav V. Yakovlev3, Luqi Yuan1*, and Xianfeng Chen1,4,5
1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, CA 49305, USA
3Texas A&M University, College Station, Texas 77843, USA
4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
5Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
Cite this article:   
Bo Peng, Shuo Yan, Dali Cheng et al  2023 Chin. Phys. Lett. 40 034201
Download: PDF(1964KB)   PDF(mobile)(1969KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The physical concept of synthetic dimensions has recently been introduced into optics. The fundamental physics and applications are not yet fully understood, and this report explores an approach to optical neural networks using synthetic dimension in time domain, by theoretically proposing to utilize a single resonator network, where the arrival times of optical pulses are interconnected to construct a temporal synthetic dimension. The set of pulses in each roundtrip therefore provides the sites in each layer in the optical neural network, and can be linearly transformed with splitters and delay lines, including the phase modulators, when pulses circulate inside the network. Such linear transformation can be arbitrarily controlled by applied modulation phases, which serve as the building block of the neural network together with a nonlinear component for pulses. We validate the functionality of the proposed optical neural network for the deep learning purpose with examples handwritten digit recognition and optical pulse train distribution classification problems. This proof of principle computational work explores the new concept of developing a photonics-based machine learning in a single ring network using synthetic dimensions, which allows flexibility and easiness of reconfiguration with complex functionality in achieving desired optical tasks.
Received: 18 November 2022      Express Letter Published: 11 February 2023
PACS:  42.15.Eq (Optical system design)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/3/034201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I3/034201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo Peng
Shuo Yan
Dali Cheng
Danying Yu
Zhanwei Liu
Vladislav V. Yakovlev
Luqi Yuan
and Xianfeng Chen
[1] Rosenbluth D, Kravtsov K, Fok M P, and Prucnal P R 2009 Opt. Express 17 22767
[2] Tait A N, Nahmias M A, Shastri B J, and Prucnal P R 2014 J. Lightwave Technol. 32 4029
[3] Shen Y C, Harris N C, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S J, Larochelle H, Englund D, and Soljačić M 2017 Nat. Photon. 11 441
[4] Tait A N, de Lima T F, Zhou E, Wu A X, Nahmias M A, Shastri B J, and Prucnal P R 2017 Sci. Rep. 7 7430
[5] Lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M, and Ozcan A 2018 Science 361 1004
[6] Ying Z F, Wang Z, Zhao Z, Dhar S, Pan D Z, Soref R, and Chen R T 2018 Opt. Lett. 43 983
[7] Feldmann J, Youngblood N, Wright C D, Bhaskaran H, and Pernice W H P 2019 Nature 569 208
[8] Zuo Y, Li B, Zhao Y, Jiang Y, Chen Y C, Chen P, Jo G B, Liu J, and Du S 2019 Optica 6 1132
[9] Hamerly R, Bernstein L, Sludds A, Soljačić M, and Englund D 2019 Phys. Rev. X 9 021032
[10] Khoram E, Chen A, Liu D, Ying L, Wang Q, Yuan M, and Yu Z 2019 Photon. Res. 7 823
[11] Zhang T, Wang J, Dan Y, Lanqiu Y, Dai J, Han X, Sun X, and Xu K 2019 Opt. Express 27 37150
[12] Zhang H, Thompson J, Gu M, Jiang D, Cai H, Liu P Y, Shi Y, Zhang Y, Karim M F, Lo G Q, Luo X, Dong B, Kwek L C, and Liu A Q 2021 ACS Photon. 8 1662
[13] Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, and Psaltis D 2020 Nature 588 39
[14] Nahmias M A, de Lima T F, Tait A N, Peng H T, Shastri B J, and Prucnal P R 2020 IEEE J. Sel. Top. Quantum Electron. 26 7701518
[15] Bogaerts W, Pérez D, Capmany J, Miller D A B, Poon J, Englund D, Morichetti F, and Melloni A 2020 Nature 586 207
[16] Xu X Y, Tan M X, Corcoran B, Wu J Y, Boes A, Nguyen T G, Chu S T, Little B E, Hicks D G, Morandotti R, Mitchell A, and Moss D J 2021 Nature 589 44
[17] Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, Gallo M L, Fu X, Lukashchuk A, Raja A S, Liu J, Wright C D, Sebastian A, Kippenberg T J, Pernice W H P, and Bhaskaran H 2021 Nature 589 52
[18] Jiang J Q, Chen M K, and Fan J A 2021 Nat. Rev. Mater. 6 679
[19] Hughes T W, Minkov M, Shi Y, and Fan S 2018 Optica 5 864
[20] Zhou T K, Fang L, Yan T, Wu J M, Li Y P, Fan J T, Wu H Q, Lin X, and Dai Q H 2020 Photon. Res. 8 940
[21] Steinbrecher G R, Olson J P, Englund D, and Carolan J 2019 npj Quantum Inf. 5 60
[22] Connor J T, Martin R D, and Atlas L E 1994 IEEE Trans. Neural Networks. Learn. Syst. 5 240
[23]Dorffner G 1996 Neural Netw. World 6 447
[24] Hüsken M and Stagge P 2003 Neurocomputing 50 223
[25]Yao K, Zweig G, Hwang M Y, Shi Y, and Yu D 2013 Proceedings of Interspeech pp 2524–2528
[26]Goodfellow I, Bengio Y, and Courville A 2016 Deep Learning (Cambridge: MIT) vol 1 pp 326–366
[27] Hughes T W, Williamson I A D, Minkov M, and Fan S 2019 Sci. Adv. 5 eaay6946
[28] Yuan L Q, Lin Q, Xiao M, and Fan S H 2018 Optica 5 1396
[29] Ozawa T and Price H M 2019 Nat. Rev. Phys. 1 349
[30] Lustig E and Segev M 2021 Adv. Opt. Photon. 13 426
[31] Liu H, Yan Z, Xiao M, and Zhu S 2021 Chin. Opt. Lett. 41 0123002
[32] Yuan L Q, Dutt A, and Fan S H 2021 APL Photon. 6 071102
[33] Pankov A V, Sidelnikov O S, Vatnik I D, Sukhorukov A A, and Churkin D V 2019 Proc. SPIE 11192 111920N
[34] Buddhiraju S, Dutt A, Minkov M, Williamson I A D, and Fan S 2021 Nat. Commun. 12 2401
[35] Lin Z, Sun S, Azana J, Li W, Zhu N, and Li M 2020 arXiv:2009.03213 [eess.SP]
[36] Regensburger A, Bersch C, Hinrichs B, Onishchukov G, Schreiber A, Silberhorn C, and Peschel U 2011 Phys. Rev. Lett. 107 233902
[37] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, and Peschel U 2012 Nature 488 167
[38] Wimmer M, Regensburger A, Bersch C, Miri M A, Batz S, Onishchukov G, Christodoulides D N, and Peschel U 2013 Nat. Phys. 9 780
[39] Marandi A, Wang Z, Takata K, Byer R L, and Yamamoto Y 2014 Nat. Photon. 8 937
[40] Wimmer M, Price H M, Carusotto I, and Peschel U 2017 Nat. Phys. 13 545
[41] Chen C, Ding X, Qin J, He Y, Luo Y H, Chen M C, Liu C, Wang X L, Zhang W J, Li H, You L X, Wang Z, Wang D W, Sanders B C, Lu C Y, and Pan J W 2018 Phys. Rev. Lett. 121 100502
[42] Larger L, Baylón-Fuentes A, Martinenghi R, Udaltsov V S, Chembo Y K, and Jacquot M 2017 Phys. Rev. X 7 011015
[43] Pankov A V, Vatnik I D, Sukhorukov A A 2022 Phys. Rev. Appl. 17 024011
[44] Lecun Y and Botto L 1998 Proc. IEEE 86 2278
[45] Leefmans C, Dutt A, Williams J, Yuan L, Parto M, Nori F, Fan S, and Marandi A 2022 Nat. Phys. 18 442
[46] Bao Q L, Zhang H, Ni Z H, Wang Y, Polavarapu L, Shen Z X, Xu Q H, Tang D Y, and Loh K P 2011 Nano Res. 4 297
[47] Cheng Z, Tsang H K, Wang X, Xu K, and Xu J B 2014 IEEE J. Sel. Top. Quantum Electron. 20 43
[48] Xie Q J, Zhang H H, and Shu C 2020 J. Lightwave Technol. 38 339
[49] Bengio Y 2009 Found. Trends Mach. Learn. 2 1
[50] Scherer D, Müller A, and Behnke S 2010 Proc. 20th International Conference on Artificial Neural Networks 6354 LNCS (PART 3) p 92
[51] Raudys S 1998 Neural Networks 11 283
[52] Lehtokangas M and Saarinen J 1998 Neurocomputing 20 265
[53] Sebastiani F 2002 ACM Comput. Surv. 34 1
[54] Saleem N and Khattak M I 2020 Appl. Acoust. 167 107385
[55] Psaltis D, Brady D, and Wagner K 1988 Appl. Opt. 27 1752
[56] Tainta S, Erro M J, Amaya W, Garde M J, Sales S, and Muriel M A 2012 IEEE J. Sel. Top. Quantum Electron. 18 377
[57] Malacarne A and Azaña J 2013 Opt. Express 21 4139
[58] Willianmson I A D, Hughes T W, Minkov M, Bartlett B, Pai S, and Fan S 2020 IEEE J. Sel. Top. Quantum Electron. 26 7700412
[59] Chen Z G and Segev M 2021 ELight 1 2
[60] Duran-Sierra E, Cheng S, Cuenca R, Ahmed B, Ji J, Yakovlev V V, Martinez M, Al-Khalil M, Al-Enazi H, Cheng Y S L, Wright J, Busso C, Jo J A 2021 Cancers 13 4751
[61] Shirshin E A, Gayerm A V, Nikonova E E, Lukina M M, Yakimov B P, Budylin G S, Dudenkova V V, Ignatova N I, Komarov D V, Zagaynova E V, Yakovlev V V, Becker W, Shcheslavskiy V I, Shirmanova M, and Scully M O 2022 Proc. Natl. Acad. Sci. USA 119 e2118241119
Related articles from Frontiers Journals
[1] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 034201
[2] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 034201
[3] Yang Miao, Xiang Guo, Xiao-Jun Zhang. Visualization of Fiber Moving in Air Tunnel with Velocity Gradient[J]. Chin. Phys. Lett., 2020, 37(3): 034201
[4] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 034201
[5] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 034201
[6] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 034201
[7] Lei Liu, Shou-Huan Zhou, Yang Liu, Zhe Wang, Gang Wang, Hong Zhao. The 5.2kW Nd:YAG Slab Amplifier Chain Seeded by Nd:YVO$_{4}$ Innoslab Laser[J]. Chin. Phys. Lett., 2017, 34(6): 034201
[8] Lei Hou, Xiao-Wei Han, Lei Yang, Wei Shi. Terahertz Real-Time Off-Axis Digital Holography with Zoom Function[J]. Chin. Phys. Lett., 2017, 34(5): 034201
[9] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 034201
[10] Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang, Dong-Xiang Zhang, Xin Xu, Jia-Sheng Ye, Yan Zhang, Dong-Mei Li, Qing-Bo Meng, Li Pan, Guo-Zhen Yang. Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics[J]. Chin. Phys. Lett., 2016, 33(09): 034201
[11] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 034201
[12] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 034201
[13] WANG Zhong-Kai, HU Dong, NIU Lin-Xiao, ZHANG Jia-Hua, CHEN Xu-Zong, ZHOU Xiao-Ji. The Mode Matching of Hybrid Trap by Frequency Calibration[J]. Chin. Phys. Lett., 2015, 32(5): 034201
[14] HE Tao, YANG Su-Hui, Miguel Ángel Muñoz, ZHANG Hai-Yang, ZHAO Chang-Ming, ZHANG Yi-Chen, XU Peng. High-Power High-Efficiency Laser Power Transmission at 100 m Using Optimized Multi-Cell GaAs Converter[J]. Chin. Phys. Lett., 2014, 31(10): 034201
[15] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 034201
Viewed
Full text


Abstract