FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension |
Bo Peng1†, Shuo Yan1†, Dali Cheng2, Danying Yu1, Zhanwei Liu1, Vladislav V. Yakovlev3, Luqi Yuan1*, and Xianfeng Chen1,4,5 |
1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, CA 49305, USA 3Texas A&M University, College Station, Texas 77843, USA 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China 5Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
|
|
Cite this article: |
Bo Peng, Shuo Yan, Dali Cheng et al 2023 Chin. Phys. Lett. 40 034201 |
|
|
Abstract The physical concept of synthetic dimensions has recently been introduced into optics. The fundamental physics and applications are not yet fully understood, and this report explores an approach to optical neural networks using synthetic dimension in time domain, by theoretically proposing to utilize a single resonator network, where the arrival times of optical pulses are interconnected to construct a temporal synthetic dimension. The set of pulses in each roundtrip therefore provides the sites in each layer in the optical neural network, and can be linearly transformed with splitters and delay lines, including the phase modulators, when pulses circulate inside the network. Such linear transformation can be arbitrarily controlled by applied modulation phases, which serve as the building block of the neural network together with a nonlinear component for pulses. We validate the functionality of the proposed optical neural network for the deep learning purpose with examples handwritten digit recognition and optical pulse train distribution classification problems. This proof of principle computational work explores the new concept of developing a photonics-based machine learning in a single ring network using synthetic dimensions, which allows flexibility and easiness of reconfiguration with complex functionality in achieving desired optical tasks.
|
|
Received: 18 November 2022
Express Letter
Published: 11 February 2023
|
|
PACS: |
42.15.Eq
|
(Optical system design)
|
|
42.30.Lr
|
(Modulation and optical transfer functions)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
42.79.Ta
|
(Optical computers, logic elements, interconnects, switches; neural networks)
|
|
|
|
|
[1] | Rosenbluth D, Kravtsov K, Fok M P, and Prucnal P R 2009 Opt. Express 17 22767 |
[2] | Tait A N, Nahmias M A, Shastri B J, and Prucnal P R 2014 J. Lightwave Technol. 32 4029 |
[3] | Shen Y C, Harris N C, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S J, Larochelle H, Englund D, and Soljačić M 2017 Nat. Photon. 11 441 |
[4] | Tait A N, de Lima T F, Zhou E, Wu A X, Nahmias M A, Shastri B J, and Prucnal P R 2017 Sci. Rep. 7 7430 |
[5] | Lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M, and Ozcan A 2018 Science 361 1004 |
[6] | Ying Z F, Wang Z, Zhao Z, Dhar S, Pan D Z, Soref R, and Chen R T 2018 Opt. Lett. 43 983 |
[7] | Feldmann J, Youngblood N, Wright C D, Bhaskaran H, and Pernice W H P 2019 Nature 569 208 |
[8] | Zuo Y, Li B, Zhao Y, Jiang Y, Chen Y C, Chen P, Jo G B, Liu J, and Du S 2019 Optica 6 1132 |
[9] | Hamerly R, Bernstein L, Sludds A, Soljačić M, and Englund D 2019 Phys. Rev. X 9 021032 |
[10] | Khoram E, Chen A, Liu D, Ying L, Wang Q, Yuan M, and Yu Z 2019 Photon. Res. 7 823 |
[11] | Zhang T, Wang J, Dan Y, Lanqiu Y, Dai J, Han X, Sun X, and Xu K 2019 Opt. Express 27 37150 |
[12] | Zhang H, Thompson J, Gu M, Jiang D, Cai H, Liu P Y, Shi Y, Zhang Y, Karim M F, Lo G Q, Luo X, Dong B, Kwek L C, and Liu A Q 2021 ACS Photon. 8 1662 |
[13] | Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, and Psaltis D 2020 Nature 588 39 |
[14] | Nahmias M A, de Lima T F, Tait A N, Peng H T, Shastri B J, and Prucnal P R 2020 IEEE J. Sel. Top. Quantum Electron. 26 7701518 |
[15] | Bogaerts W, Pérez D, Capmany J, Miller D A B, Poon J, Englund D, Morichetti F, and Melloni A 2020 Nature 586 207 |
[16] | Xu X Y, Tan M X, Corcoran B, Wu J Y, Boes A, Nguyen T G, Chu S T, Little B E, Hicks D G, Morandotti R, Mitchell A, and Moss D J 2021 Nature 589 44 |
[17] | Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, Gallo M L, Fu X, Lukashchuk A, Raja A S, Liu J, Wright C D, Sebastian A, Kippenberg T J, Pernice W H P, and Bhaskaran H 2021 Nature 589 52 |
[18] | Jiang J Q, Chen M K, and Fan J A 2021 Nat. Rev. Mater. 6 679 |
[19] | Hughes T W, Minkov M, Shi Y, and Fan S 2018 Optica 5 864 |
[20] | Zhou T K, Fang L, Yan T, Wu J M, Li Y P, Fan J T, Wu H Q, Lin X, and Dai Q H 2020 Photon. Res. 8 940 |
[21] | Steinbrecher G R, Olson J P, Englund D, and Carolan J 2019 npj Quantum Inf. 5 60 |
[22] | Connor J T, Martin R D, and Atlas L E 1994 IEEE Trans. Neural Networks. Learn. Syst. 5 240 |
[23] | Dorffner G 1996 Neural Netw. World 6 447 |
[24] | Hüsken M and Stagge P 2003 Neurocomputing 50 223 |
[25] | Yao K, Zweig G, Hwang M Y, Shi Y, and Yu D 2013 Proceedings of Interspeech pp 2524–2528 |
[26] | Goodfellow I, Bengio Y, and Courville A 2016 Deep Learning (Cambridge: MIT) vol 1 pp 326–366 |
[27] | Hughes T W, Williamson I A D, Minkov M, and Fan S 2019 Sci. Adv. 5 eaay6946 |
[28] | Yuan L Q, Lin Q, Xiao M, and Fan S H 2018 Optica 5 1396 |
[29] | Ozawa T and Price H M 2019 Nat. Rev. Phys. 1 349 |
[30] | Lustig E and Segev M 2021 Adv. Opt. Photon. 13 426 |
[31] | Liu H, Yan Z, Xiao M, and Zhu S 2021 Chin. Opt. Lett. 41 0123002 |
[32] | Yuan L Q, Dutt A, and Fan S H 2021 APL Photon. 6 071102 |
[33] | Pankov A V, Sidelnikov O S, Vatnik I D, Sukhorukov A A, and Churkin D V 2019 Proc. SPIE 11192 111920N |
[34] | Buddhiraju S, Dutt A, Minkov M, Williamson I A D, and Fan S 2021 Nat. Commun. 12 2401 |
[35] | Lin Z, Sun S, Azana J, Li W, Zhu N, and Li M 2020 arXiv:2009.03213 [eess.SP] |
[36] | Regensburger A, Bersch C, Hinrichs B, Onishchukov G, Schreiber A, Silberhorn C, and Peschel U 2011 Phys. Rev. Lett. 107 233902 |
[37] | Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, and Peschel U 2012 Nature 488 167 |
[38] | Wimmer M, Regensburger A, Bersch C, Miri M A, Batz S, Onishchukov G, Christodoulides D N, and Peschel U 2013 Nat. Phys. 9 780 |
[39] | Marandi A, Wang Z, Takata K, Byer R L, and Yamamoto Y 2014 Nat. Photon. 8 937 |
[40] | Wimmer M, Price H M, Carusotto I, and Peschel U 2017 Nat. Phys. 13 545 |
[41] | Chen C, Ding X, Qin J, He Y, Luo Y H, Chen M C, Liu C, Wang X L, Zhang W J, Li H, You L X, Wang Z, Wang D W, Sanders B C, Lu C Y, and Pan J W 2018 Phys. Rev. Lett. 121 100502 |
[42] | Larger L, Baylón-Fuentes A, Martinenghi R, Udaltsov V S, Chembo Y K, and Jacquot M 2017 Phys. Rev. X 7 011015 |
[43] | Pankov A V, Vatnik I D, Sukhorukov A A 2022 Phys. Rev. Appl. 17 024011 |
[44] | Lecun Y and Botto L 1998 Proc. IEEE 86 2278 |
[45] | Leefmans C, Dutt A, Williams J, Yuan L, Parto M, Nori F, Fan S, and Marandi A 2022 Nat. Phys. 18 442 |
[46] | Bao Q L, Zhang H, Ni Z H, Wang Y, Polavarapu L, Shen Z X, Xu Q H, Tang D Y, and Loh K P 2011 Nano Res. 4 297 |
[47] | Cheng Z, Tsang H K, Wang X, Xu K, and Xu J B 2014 IEEE J. Sel. Top. Quantum Electron. 20 43 |
[48] | Xie Q J, Zhang H H, and Shu C 2020 J. Lightwave Technol. 38 339 |
[49] | Bengio Y 2009 Found. Trends Mach. Learn. 2 1 |
[50] | Scherer D, Müller A, and Behnke S 2010 Proc. 20th International Conference on Artificial Neural Networks 6354 LNCS (PART 3) p 92 |
[51] | Raudys S 1998 Neural Networks 11 283 |
[52] | Lehtokangas M and Saarinen J 1998 Neurocomputing 20 265 |
[53] | Sebastiani F 2002 ACM Comput. Surv. 34 1 |
[54] | Saleem N and Khattak M I 2020 Appl. Acoust. 167 107385 |
[55] | Psaltis D, Brady D, and Wagner K 1988 Appl. Opt. 27 1752 |
[56] | Tainta S, Erro M J, Amaya W, Garde M J, Sales S, and Muriel M A 2012 IEEE J. Sel. Top. Quantum Electron. 18 377 |
[57] | Malacarne A and Azaña J 2013 Opt. Express 21 4139 |
[58] | Willianmson I A D, Hughes T W, Minkov M, Bartlett B, Pai S, and Fan S 2020 IEEE J. Sel. Top. Quantum Electron. 26 7700412 |
[59] | Chen Z G and Segev M 2021 ELight 1 2 |
[60] | Duran-Sierra E, Cheng S, Cuenca R, Ahmed B, Ji J, Yakovlev V V, Martinez M, Al-Khalil M, Al-Enazi H, Cheng Y S L, Wright J, Busso C, Jo J A 2021 Cancers 13 4751 |
[61] | Shirshin E A, Gayerm A V, Nikonova E E, Lukina M M, Yakimov B P, Budylin G S, Dudenkova V V, Ignatova N I, Komarov D V, Zagaynova E V, Yakovlev V V, Becker W, Shcheslavskiy V I, Shirmanova M, and Scully M O 2022 Proc. Natl. Acad. Sci. USA 119 e2118241119 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|