Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 128701    DOI: 10.1088/0256-307X/40/12/128701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Characteristics of Speed–Acceleration Phase Diagram of Migrating Cells
Yikai Ma and Wei Chen*
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
Cite this article:   
Yikai Ma and Wei Chen 2023 Chin. Phys. Lett. 40 128701
Download: PDF(1634KB)   PDF(mobile)(1664KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cell movement behavior is one of the most interesting biological problems in physics, biology, and medicine. We experimentally investigate the characteristics of random cell motion during migration. Observing cell motion trajectories under a microscope, we employ a nonlinear dynamics method to construct a speed–acceleration phase diagram. Our analysis reveals the presence of a fixed point in this phase diagram, which suggests that migrating cells possess a stable state. Cells that deviate from this stable state display a tendency to return to it, following the streamline trends of an attractor structure in the phase diagram. We derive a set of characteristic values describing cell motion, encompassing inherent speed, inherent acceleration, characteristic time for speed change, and characteristic time for acceleration change. We develop a differential equation model based on experimental data and conduct numerical calculations. The computational results align with the findings obtained from experiments. Our research suggests that the asymmetrical characteristics observed in cell motion near an inherent speed primarily arise from properties of inherent acceleration of cells.
Received: 19 September 2023      Published: 01 December 2023
PACS:  05.40.Fb (Random walks and Levy flights)  
  87.17.Jj (Cell locomotion, chemotaxis)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/128701       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/128701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yikai Ma and Wei Chen
[1] Lauffenburger D A and Horwitz A F 1996 Cell 84 359
[2] Codling E A, Plank M J, and Benhamou S 2008 J. R. Soc. Interface 5 813
[3] Petrie R J, Doyle A D and Yamada K M 2009 Nat. Rev. Mol. Cell Biol. 10 538
[4] Loeber J, Ziebert F, and Aranson I S 2014 Soft Matter 10 1365
[5] Li L, Cox E C and Flyvbjerg H 2011 Phys. Biol. 8 046006
[6] Dieterich P, Preuss R, and Schwab A 2008 Proc. Natl. Acad. Sci. USA 105 459
[7] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[8] Roumen T and Lensen M C 2013 Chin. Phys. Lett. 30 070501
[9] Czirók A, Madarász E, and Vicsek T 1998 Phys. Rev. Lett. 81 3038
[10] Liu Y P, He D, Jiao Y, Li G Q, Zheng Y, Fan Q H, Wang G, Yao J R, Chen G, and Liu L Y 2021 Chin. Phys. B 30 090505
[11] Shenderov A D and Sheetz M P 1997 Biophys. J. 72 2382
[12] Zhang J Z, Li N, and Chen W 2018 Chin. Phys. B 27 028705
[13] Begemann I, Saha T, Lamparter L, Rathmann I, Grill D, Golbach L, Rasch C, Keller U, Trappmann B, Matis M, Klingauf J, and Galic M 2019 Nat. Phys. 15 848
[14] Yooer C F, Wei F, Xu J X, and Zhang X H 2011 Chin. Phys. Lett. 28 030501
[15] Brückner D B, Fink A, Schreiber C, Röttgermann P J F, Rädler J O, and Broedersz C P 2019 Nat. Phys. 15 595
[16] Goldbeter A, Gonze D, Houart G, Halloy J, and Dupont G 2001 Chaos 11 247
[17] Levine H, Tsimring L, and Truong T V 1996 Proc. Natl. Acad. Sci. USA 93 6382
[18] Shams D P, Mehta P, and Schwab D J 2020 Phys. Rev. E 101 062410
[19] Chen S, Li N, Hsu S F, Zhang J, Chan C K, and Chen W 2014 Soft Matter 10 3421
Related articles from Frontiers Journals
[1] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 128701
[2] Hong Zhang, Guo-Hua Li. Reaction Subdiffusion with Random Waiting Time Depending on the Preceding Jump Length[J]. Chin. Phys. Lett., 2018, 35(9): 128701
[3] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 128701
[4] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 128701
[5] Yang Song, Jing-Dong Bao. Giant Enhancement of Diffusion in a Tilted Egg-Carton Potential[J]. Chin. Phys. Lett., 2016, 33(02): 128701
[6] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 128701
[7] ZHAO Jing, HU Ya-Yun, TONG Pei-Qing. The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk[J]. Chin. Phys. Lett., 2015, 32(06): 128701
[8] LI Jing-Hui. Dilemma Produced by Infinity of a Random Walk[J]. Chin. Phys. Lett., 2015, 32(5): 128701
[9] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 128701
[10] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 128701
[11] XIE Yan-Bo, LI Yu-Jian, LI Ming, XI Zhen-Dong, WANG Bing-Hong. An Exact Numerical Approach to Calculate the First Passage Time for General Random Walks on a Network[J]. Chin. Phys. Lett., 2013, 30(11): 128701
[12] LIU Jian, BAO Jing-Dong. Effective Jump Length of Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2013, 30(2): 128701
[13] LI Min, ZHANG Yong-Sheng, GUO Gunag-Can. Quantum Random Walk in Periodic Potential on a Line[J]. Chin. Phys. Lett., 2013, 30(2): 128701
[14] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 128701
[15] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 128701
Viewed
Full text


Abstract