Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 127301    DOI: 10.1088/0256-307X/40/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Realizations, Characterizations, and Manipulations of Two-Dimensional Electron Systems Floating above Superfluid Helium Surfaces
Haoran Wei1,3†, Mengmeng Wu2†, Renfei Wang2, Mingcheng He1,3, Hiroki Ikegami1, Yang Liu2*, and Zhi Gang Cheng1,3,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2International Center for Quantum Materials, Peking University, Beijing 100871, China
3School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Haoran Wei, Mengmeng Wu, Renfei Wang et al  2023 Chin. Phys. Lett. 40 127301
Download: PDF(4147KB)   PDF(mobile)(4161KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electron systems in low dimensions are enriched with many superior properties for both fundamental research and technical developments. Wide tunability of electron density, high mobility of motion, and feasible controllability in microscales are the most prominent advantages that researchers strive for. Nevertheless, it is always difficult to fulfill all in one solid-state system. Two-dimensional electron systems (2DESs) floating above the superfluid helium surfaces are thought to meet these three requirements simultaneously, ensured by the atomic smoothness of surfaces and the electric neutrality of helium. Here we report our recent work in preparing, characterizing, and manipulating 2DESs on superfluid helium. We realized a tunability of electron density over one order of magnitude and tuned their transport properties by varying electron distribution and measurement frequency. The work we engage in is crucial for advancing research in many-body physics and for development of single-electron quantum devices rooted in these electron systems.
Received: 01 November 2023      Editors' Suggestion Published: 11 December 2023
PACS:  05.30.Fk (Fermion systems and electron gas)  
  67.25.-k (4He)  
  73.61.-r (Electrical properties of specific thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/127301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haoran Wei
Mengmeng Wu
Renfei Wang
Mingcheng He
Hiroki Ikegami
Yang Liu
and Zhi Gang Cheng
[1] Klitzing K V, Dorda G, and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Tsui D C, Stormer H L, and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[3] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, and Mannhart J 2007 Science 317 1196
[4] Gariglio S, Reyren N, Caviglia A D, and Triscone J M 2009 J. Phys.: Condens. Matter 21 164213
[5] Liu C J, Yan X, Jin D F, Ma Y, Hsiao H W, Lin Y L, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H, and Bhattacharya A 2021 Science 371 716
[6] Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, and Xie Y 2021 Science 372 721
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[8] Zhang Y B, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201
[9] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, and Kis A 2011 Nat. Nanotechnol. 6 147
[10] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, and Wang F 2010 Nano Lett. 10 1271
[11] Mak K F, Lee C, Hone J, Shan J, and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[12] Andrei E Y, Lévy F, and Mooser E, eds. 1997 Two-Dimensional Electron Systems: on Helium and other Cryogenic Substrates (Netherlands: Springer)
[13] Grimes C C 1978 Surf. Sci. 73 379
[14] Williams F I B 1982 Surf. Sci. 113 371
[15] Sommer W T 1964 Phys. Rev. Lett. 12 271
[16] Monarkha Y and Kono K 2004 Two-Dimensional Coulomb Liquids and Solids (Berlin: Springer)
[17] Shirahama K and Kono K 1995 Phys. Rev. Lett. 74 781
[18] Grimes C C and Adams G 1979 Phys. Rev. Lett. 42 795
[19]Supplemental Materials include the details of electron emissions, calculations of saturated electron density, simulations of electron distributions, analyses on transmission-line model, and simulations of potential profile and fringing effect.
[20] Sommer W T and Tanner D J 1971 Phys. Rev. Lett. 27 1345
[21] Mehrotra R and Dahm A J 1987 J. Low Temp. Phys. 67 115
[22] Lea M J, Stone A O, Fozooni P, and Frost J 1991 J. Low Temp. Phys. 85 67
[23] Nasyedkin K, Byeon H, Zhang L, Beysengulov N R, Milem J, Hemmerle S, Loloee R, and Pollanen J 2018 J. Phys.: Condens. Matter 30 465501
[24] Ikegami H, Akimoto H, and Kono K 2009 Phys. Rev. Lett. 102 046807
[25]Gor'kov L P and Chernikova D M 1973 JETP Lett. 18 68
[26] Mima K and Ikezi H 1978 Phys. Rev. B 17 3567
[27] Williams R and Crandall R S 1971 Phys. Lett. A 36 35
[28] Lin X, Du R, and Xie X 2014 Natl. Sci. Rev. 1 564
[29] Nuebler J, Umansky V, Morf R, Heiblum M, Von Klitzing K, and Smet J 2010 Phys. Rev. B 81 035316
[30] Pan W, Masuhara N, Sullivan N S, Baldwin K W, West K W, Pfeiffer L N, and Tsui D C 2011 Phys. Rev. Lett. 106 206806
[31] Shankar S, Sabouret G, and Lyon S A 2010 J. Low Temp. Phys. 161 410
Related articles from Frontiers Journals
[1] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 127301
[2] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 127301
[3] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 127301
[4] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 127301
[5] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 127301
[6] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 127301
[7] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 127301
[8] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams[J]. Chin. Phys. Lett., 2014, 31(09): 127301
[9] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams[J]. Chin. Phys. Lett., 2014, 31(07): 127301
[10] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 127301
[11] ZHU Hua-Xin, WANG Tong-Tong, GAO Jin-Song, LI Shuai, SUN Ya-Jun, LIU Gui-Lin. Floquet Topological Insulator in the BHZ Model with the Polarized Optical Field[J]. Chin. Phys. Lett., 2014, 31(03): 127301
[12] CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang, CHEN Yong. Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices[J]. Chin. Phys. Lett., 2014, 31(03): 127301
[13] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 127301
[14] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 127301
[15] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 127301
Viewed
Full text


Abstract