Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 124204    DOI: 10.1088/0256-307X/40/12/124204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
All-Optical Switches for Optical Soliton Interactions in a Birefringent Fiber
Xin Zhang1*, Houhui Yi1, Yanli Yao2, Shubin Wang3, and Lingxian Shi2
1School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China
2Institute of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
3Flight College, Binzhou University, Binzhou 256603, China
Cite this article:   
Xin Zhang, Houhui Yi, Yanli Yao et al  2023 Chin. Phys. Lett. 40 124204
Download: PDF(10569KB)   PDF(mobile)(10577KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interactions among optical solitons can be used to develop photonic information processing devices such as all-optical switches and all-optical logic gates. It is the key to achieve high-speed, high-capacity all-optical networks and optical computers, which is also important in academy. We study the properties of all-optical switches of optical solitons in birefringent fibers, based on the coupled nonlinear Schrödinger equations. It is found that under different initial conditions we can achieve all-optical switching functions. We also study the influence of different physical parameters of birefringent fibers on all-optical soliton switching. The relevant conclusions are conducive to achieving the all-optical switching function of optical solitons in birefringent fibers, providing useful guidance for widespread applications of optical soliton all-optical switches in birefringent fibers of communications.
Received: 20 November 2023      Published: 21 December 2023
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/124204       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/124204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Zhang
Houhui Yi
Yanli Yao
Shubin Wang
and Lingxian Shi
[1] Yin K H, Cheng X P, and Lin J 2021 Chin. Phys. Lett. 38 080201
[2] Cui W W, Xing X W, Chen Y Q, Xiao Y J, Han Y, and Liu W J 2023 Chin. Phys. Lett. 40 024201
[3] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[4] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[5] Zhang Y L, Jia C Y, and Liang Z X 2022 Chin. Phys. Lett. 39 020501
[6] Wang S B, Zhang X, Ma G L, and Zhu D Y 2023 Chin. Phys. B 32 030506
[7] Wang Q, Mihalache D, Belic M R, Zeng L W, and Lin J 2023 Opt. Lett. 48 747
[8] Wang T Y, Zhou Q, and Liu W J 2022 Chin. Phys. B 31 020501
[9] Ma G L, Zhao J B, Zhou Q, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2479
[10] Meng L, Liu J L, Zhang H F, and Yang W X 2021 Appl. Opt. 60 5854
[11] Longobucco M, Cimek J, Pysz D, Buczynski R, and Bugar I 2021 Opt. Fiber Technol. 63 102514
[12] Anbardan S R, Eslami M, and Kheradmand R 2020 Opt. Commun. 474 126093
[13] Melchert O, Brée C, Tajalli A, Pape A, Arkhipov R, Willms S, Babushkin I, Skryabin D, Steinmeyer G, Morgner U, and Demircan A 2020 Commun. Phys. 3 146
[14] Longobucco M, Stajanca P, Curilla L, Buczynski R, and Bugár I 2020 Laser Phys. Lett. 17 025102
[15] Liu W J, Zhang Y J, Luan Z T, Zhou Q, Mirzazadeh M, Ekici M, and Biswas A 2019 Nonlinear Dyn. 96 729
[16] Nandy S and Barthakur A 2019 Commun. Nonlinear Sci. Numer. Simul. 69 370
[17] Yu W T, Zhou Q, Mirzazadeh M, Liu W J, and Biswas A 2019 J. Adv. Res. 15 69
[18] Xomalis A, Demirtzioglou I, Jung Y M, Plum E, Lacava C, Petropoulos P, Richardson D J, and Zheludev N I 2018 Appl. Phys. Lett. 113 051103
[19] Uthayakumar T and Raja R V J 2018 J. Opt. 20 065503
[20] Yang C Y, Li W Y, Yu W T, Liu M L, Zhang Y J, Ma G L, Lei M, and Liu W J 2018 Nonlinear Dyn. 92 203
[21] Ghadi A and Sohrabfar S 2018 IEEE Photonics Technol. Lett. 30 569
[22] Kotb A 2017 Opt. Quantum Electron. 49 281
[23] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J, Lei M, and Wei Z Y 2017 Europhys. Lett. 118 34004
[24] Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[25] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[26] Cai Y J, Wu J W, Hu L T, and Lin J 2021 Phys. Scr. 96 095212
[27] Liu X Y, Zhang H X, Yan Y Y, and Liu W J 2023 Phys. Lett. A 457 128568
Related articles from Frontiers Journals
[1] Abdul-Majid Wazwaz. New Painlevé Integrable (3+1)-Dimensional Combined pKP–BKP Equation: Lump and Multiple Soliton Solutions[J]. Chin. Phys. Lett., 2023, 40(12): 124204
[2] Yanli Yao, Houhui Yi, Xin Zhang, and Guoli Ma. Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2023, 40(10): 124204
[3] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 124204
[4] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 124204
[5] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 124204
[6] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 124204
[7] Cuicui Ding, Qin Zhou, Siliu Xu, Houria Triki, Mohammad Mirzazadeh, and Wenjun Liu. Nonautonomous Breather and Rogue Wave in Spinor Bose–Einstein Condensates with Space-Time Modulated Potentials[J]. Chin. Phys. Lett., 2023, 40(4): 124204
[8] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 124204
[9] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 124204
[10] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 124204
[11] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 124204
[12] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 124204
[13] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 124204
[14] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 124204
[15] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 124204
Viewed
Full text


Abstract