Chin. Phys. Lett.  2023, Vol. 40 Issue (12): 120202    DOI: 10.1088/0256-307X/40/12/120202
GENERAL |
Multi-Pseudo Peakons in the $b$-Family Fifth-Order Camassa–Holm Model
Dinghao Zhu and Xiaodong Zhu*
Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
Cite this article:   
Dinghao Zhu and Xiaodong Zhu 2023 Chin. Phys. Lett. 40 120202
Download: PDF(5625KB)   PDF(mobile)(5663KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The $b$-family fifth-order Camassa–Holm model is a nontrivial extension of the celebrated Camassa–Holm model. This work investigates single-pseudo and multi-pseudo peakon solutions of this model via analytical calculations and numerical simulations. Some intriguing phenomena of multi-pseudo peakon which do not appear in the classical Camassa–Holm model interactions are observed, such as two-pseudo peakon collapses, three-pseudo peakon resonance, and multi-pseudo peakon inelastic collisions. The present work will inspire further studies on the higher-dimensional integrable Camassa–Holm systems which may have high value in investigating the related higher-dimensional physical problems.
Received: 07 October 2023      Published: 21 December 2023
PACS:  02.30.Ik.  
  94.05.Fg.  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/12/120202       OR      https://cpl.iphy.ac.cn/Y2023/V40/I12/120202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dinghao Zhu and Xiaodong Zhu
[1] Fuchssteiner B and Fokas A S 1981 Physica D 4 47
[2] Camassa R and Holm D 1993 Phys. Rev. Lett. 71 1661
[3] Qiao Z J 2003 Commun. Math. Phys. 239 309
[4] Qiao Z J 2001 Rev. Math. Phys. 13 545
[5] Qiao Z J 2001 Theor. Math. Phys. 127 827
[6] Minakov A 2016 J. Differ. Equ. 261 6055
[7] Charlier C, Lenells J, and Wang D S 2023 Anal. PDE 16 1351
[8] Wang D S, Guo B, and Wang X 2019 J. Differ. Equ. 266 5209
[9] Bilman D, Buckingham R, and Wang D S 2021 J. Differ. Equ. 297 320
[10] Grava T, Pierce V U, and Tian F R 2009 Physica D 238 55
[11] Xu L, Wang D S, Wen X Y, and Jiang Y L 2020 J. Nonlinear Sci. 30 537
[12] Liu Y Q and Wang D S 2022 Stud. Appl. Math. 149 588
[13] Gong R Z and Wang D S 2022 Physica D 439 133398
[14] Dullin H R, Gottwald G A, and Holm D D 2001 Phys. Rev. Lett. 87 194501
[15] Degasperis A, Holm D D, and Hone A N W 2002 Theor. Math. Phys. 133 1463
[16]Degasperis A and Procesi M 1999 Symmetry and Perturbation Theory (Singapore: World Scientific) pp 23–37
[17] Qi Z, Zhang Z and Li B 2021 Chin. Phys. Lett. 38 060501
[18] Yin K H, Cheng X P and Lin J 2021 Chin. Phys. Lett. 38 080201
[19] Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[20] Ma W X 2022 Chin. Phys. Lett. 39 100201
[21] Zhang X M, Qing Y H, Ling L M and Zhao L C 2021 Chin. Phys. Lett. 38 090201
[22] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[23] Zhang Y, Jia C and Liang Z 2022 Chin. Phys. Lett. 39 020501
[24] Wang S, Ma G, Zhang X and Zhu D 2022 Chin. Phys. Lett. 39 114202
[25] He J T, Fang P P and Lin J 2022 Chin. Phys. Lett. 39 020301
[26] Cao Y and Cao J 2021 Chin. Phys. Lett. 39 080202
[27] Constantin A and Kolev B 2003 J. Nonlinear Math. Phys. 10 424
[28] Coclite G M, Holden H, and Karlsen K H 2009 J. Differ. Equ. 246 929
[29] Liu Q S and Qiao Z J 2018 Int. J. Non-Linear Mech. 105 179
[30] Zhang Y F, Liu Q S, and Qiao Z J 2019 Mod. Phys. Lett. B 33 1950205
[31] Holm D D and Hone A N W 2003 Theor. Math. Phys. 137 1459
[32] Lou S Y, Jia M, and Hao X Z 2023 Chin. Phys. Lett. 40 020201
[33] Zhu M X, Jiang Z H, and Qiao Z J 2022 J. Evol. Equ. 22 19
[34] Zhu M X, Cao L, Jiang Z H, and Qiao Z J 2021 J. Nonlinear Math. Phys. 28 321
[35] Qiao Z J and Reyes E G 2023 Appl. Numer. Math. (in press)
[36] Górka P, Pons D J, and Reyes E G 2015 J. Geom. Phys. 87 190
[37] Holm D D and Staley M F 2003 Phys. Lett. A 308 437
[38] Holm D D and Staley M F 2003 SIAM J. Appl. Dyn. Syst. 2 323
[39]Dirac P A M 1958 The Principles of Quantum Mechanics (Oxford: Clarendon Press) pp 58–61
Viewed
Full text


Abstract