FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Near-Field Thermal Splitter Based on Magneto-Optical Nanoparticles |
Wen-Xuan Ge1,2,3,4, Yang Hu4,5, Lei Gao1,2,3*, and Xiaohu Wu4* |
1School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China 2School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China 3Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China 4Shandong Institute of Advanced Technology, Jinan 250100, China 5School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
|
|
Cite this article: |
Wen-Xuan Ge, Yang Hu, Lei Gao et al 2023 Chin. Phys. Lett. 40 114401 |
|
|
Abstract Based on the many-body radiative heat transfer theory, we investigate a thermal splitter based on three magneto-optical InSb nanoparticles. The system comprises a source with adjustable parameters and two drains with fixed parameters. By leveraging the temperature and magnetic field dependence of the permittivity of InSb, the direction of heat flux in the system can be controlled by adjusting the magnetic field or temperature at the source. Under magnetic field control, the coupling between the separated modes, and the suppression of the zero-field mode induced by the magnetic field, are utilized to achieve a thermal splitting ratio within the modulation range of 0.15–0.58. Furthermore, temperature control results in a thermal splitting ratio ranging from $0.15$ to $0.99$, as a result of the suppression of the zero-field mode by the magnetic field and the blue shift effect of the zero-field mode frequency increasing with temperature. Notably, the gap distance between nanoparticles does not significantly affect the splitting ratio. These findings provide valuable theoretical guidance for utilizing magneto-optical nanoparticles as thermal splitters and lay the groundwork for implementing complex heat flux networks using InSb for energy collection and heat transfer control.
|
|
Received: 25 July 2023
Published: 25 October 2023
|
|
|
|
|
|
[1] | Liu R Y, Zhou C L, Zhang Y, Cui Z, Wu X H, and Yi H L 2022 Int. J. Extreme Manuf. 4 032002 |
[2] | Rincón-García L, Thompson D, Mittapally R, Agraït N, Meyhofer E, and Reddy P 2022 Phys. Rev. Lett. 129 145901 |
[3] | Cuevas J C and García-Vidal F J 2018 ACS Photon. 5 3896 |
[4] | Zhu L X, Guo Y, and Fan S H 2018 Phys. Rev. B 97 094302 |
[5] | St-Gelais R, Zhu L, Fan S, and Lipson M 2016 Nat. Nanotechnol. 11 515 |
[6] | Otey C R, Lau W T, and Fan S 2010 Phys. Rev. Lett. 104 154301 |
[7] | Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301 |
[8] | Joulain K, Ezzahri Y, Drevillon J, and Ben-Abdallah P 2015 Appl. Phys. Lett. 106 133505 |
[9] | Hu Y, Liu H, Yang B, Shi K, Antezza M, Wu X, and Sun Y 2023 Phys. Rev. Mater. 7 035201 |
[10] | Zhang J H, Liu H T, Zhang K H, Cao J C, and Wu X H 2023 Int. J. Heat Mass Transfer 202 123714 |
[11] | Toyin O R, Ge W, and Gao L 2021 Chin. Phys. Lett. 38 016801 |
[12] | He M J, Qi H, Ren Y T, Zhao Y J, and Antezza M 2019 Appl. Phys. Lett. 115 263101 |
[13] | Fang J L, Qu L, Zhang Y, and Yi H L 2022 Int. J. Heat Mass Transfer 190 122711 |
[14] | Ben-Abdallah P, Belarouci A, Frechette L, and Biehs S A 2015 Appl. Phys. Lett. 107 053109 |
[15] | Song J L, Lu L, Li B W, Zhang B P, Hu R, Zhou X P, and Cheng Q 2020 Int. J. Heat Mass Transfer 150 119346 |
[16] | Guo C, Zhao B, Huang D, and Fan S 2020 ACS Photon. 7 3257 |
[17] | Xu G D, Sun J, Mao H M, and Pan T 2018 J. Quant. Spectrosc. Radiat. Transfer 220 140 |
[18] | Feng D D, Yee S K, and Zhang Z M 2021 Appl. Phys. Lett. 119 181111 |
[19] | Wang K and Gao L 2020 ES Energy & Environ. 7 12 |
[20] | Ogundare R T, Ge W, and Gao L 2022 Opt. Express 30 18208 |
[21] | Ben-Abdallah P 2016 Phys. Rev. Lett. 116 084301 |
[22] | Messina R, Ott A, Kathmann C, Biehs S A, and Ben-Abdallah P 2021 Phys. Rev. B 103 115440 |
[23] | Hu Y, Sun Y, Zheng Z, Song J, Shi K, and Wu X 2022 Int. J. Heat Mass Transfer 189 122666 |
[24] | Ott A, Messina R, Ben-Abdallah P, and Biehs S A 2019 J. Photon. Energy 9 1 |
[25] | Lee C S, Lee H, and Westervelt R M 2001 Appl. Phys. Lett. 79 3308 |
[26] | Panina L V, Gurevich A, Beklemisheva A, Omelyanchik A, Levada K, and Rodionova V 2022 Cells 11 950 |
[27] | Liu H T, Shi K Z, Zhou K, Ai Q, Xie M, and Wu X H 2023 Int. J. Heat Mass Transfer 208 124081 |
[28] | Ben-Abdallah P, Biehs S A, and Joulain K 2011 Phys. Rev. Lett. 107 114301 |
[29] | Sun Y S, Hu Y, Shi K Z, Zhang J H, Feng D D, and Wu X H 2022 Phys. Scr. 97 095506 |
[30] | Luo M G, Zhao J M, Liu L H, Guizal B, and Antezza M 2021 Int. J. Heat Mass Transfer 166 120793 |
[31] | Albaladejo S, Gómez-Medina R, Froufe-Pérez L S, Marinchio H, Carminati R, Torrado J F, Armelles G, García-Martín A, and Sáenz J J 2010 Opt. Express 18 3556 |
[32] | Dong J, Zhang W, and Liu L 2021 Appl. Phys. Lett. 119 021104 |
[33] | Moncada-Villa E and Cuevas J C 2020 Phys. Rev. B 101 085411 |
[34] | Moncada-Villa E, Fernández-Hurtado V, García-Vidal F J, García-Martín A, and Cuevas J C 2015 Phys. Rev. B 92 125418 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|