ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Generation of Ultrafast Attosecond Magnetic Field from Ne Dimer in Circularly Polarized Laser Pulses |
Shujuan Yan, Qingyun Xu, Xinyu Hao, Ying Guo, and Jing Guo* |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
Cite this article: |
Shujuan Yan, Qingyun Xu, Xinyu Hao et al 2023 Chin. Phys. Lett. 40 113101 |
|
|
Abstract By numerically solving time-dependent Schrödinger equations, we investigate the generation of electron currents, ultrafast magnetic fields and photoelectron momentum distributions (PMD) when circularly polarized laser pulses interact with a Ne dimer in the charge migration (CM) process. By adjusting the laser wavelength, we consider two cases: (i) coherent resonance excitation ($\lambda=76$ nm) and (ii) direct ionization ($\lambda=38$ nm). The results show that the current and magnetic field generated by the Ne dimer under resonance excitation are stronger than under direct ionization. This phenomenon is due to the quantum interference between the initial state $2p\sigma_{\rm g}$ and the excited state $3s\sigma_{\rm g}$ under resonance excitation, so the CM efficiency of the dimer can be improved and the strength of the PMD under different ionization conditions is opposite to the strength of the electron current and induced magnetic field. In addition, we also find that both $2p\pi_{\rm g}$ and $2p\pi_{\rm u}$ have coherent resonance excitation with $3s\sigma_{\rm g}$ state and generate periodic oscillating currents for the Ne dimer. The study of the dynamics of the Ne dimer under different ionization conditions lays a foundation for research of ultrafast magnetism in complex molecular systems.
|
|
Received: 13 August 2023
Published: 18 October 2023
|
|
PACS: |
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
31.15.xp
|
(Perturbation theory)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
|
|
|
[1] | Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 |
[2] | Chang Z H, Corkum P B, and Leone S R 2016 J. Opt. Soc. Am. B 33 1081 |
[3] | Hockett P, Bisgaard C Z et al. 2011 Nat. Phys. 7 612 |
[4] | Miao X Y, Liu S S 2015 Chin. Phys. Lett. 32 013301 |
[5] | Ramasesha K, Leone S R, and Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41 |
[6] | Shao J, Zhang C P, Jia J C, Ma J L, and Miao X Y 2019 Chin. Phys. Lett. 36 054203 |
[7] | Xu T T, Chen J H, Pan X F, Zhang H D, Ben S, and Liu X S 2018 Chin. Phys. B 27 093201 |
[8] | Eberly J H, Javanainen J, and Rzazewski K 1991 Phys. Rep. 204 331 |
[9] | Popmintchev T, Chen M C, Popmintchev D et al. 2012 Science 336 1287 |
[10] | Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, and Chang Z H 2012 Opt. Lett. 37 3891 |
[11] | Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, and Wörner H J 2017 Opt. Express 25 27506 |
[12] | Plaja L, Torres R, and Zaïr A (eds) 2013 Attosecond Physics. In: Springer Series in Optical Sciences vol 177 (Berlin: Springer) |
[13] | Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, and Cohen O 2015 Nat. Photon. 9 99 |
[14] | Fleischer A, Kfir O, Diskin T, Sidorenko P, and Cohen O 2014 Nat. Photon. 8 543 |
[15] | Bandrauk A D, Guo J, and Yuan K J 2017 J. Opt. 19 124016 |
[16] | Yuan K J, Guo J, and Bandrauk A D 2018 Phys. Rev. A 98 043410 |
[17] | Guo J, Yuan K J, Lu H, and Bandrauk A D 2019 Phys. Rev. A 99 053416 |
[18] | Dou Y K, Fang Y Q, Ge P, and Liu Y Q 2023 Chin. Phys. Lett. 40 033201 |
[19] | Weinkauf R, Schanen P, Yang D, Soukara S, and Schlag E 1995 J. Phys. Chem. C 99 11255 |
[20] | Barth I and Manz J 2006 Angew. Chem. Int. Ed. 45 2962 |
[21] | Mignolet B, Levine R D, and Remacle F 2014 J. Phys. B 47 124011 |
[22] | Despré V, Marciniak A, Loriot V, Galbraith M, Rouzee M, Vrakking M, Lepine F, and Kuleff A 2015 J. Phys. Chem. Lett. 6 426 |
[23] | Remacle F and Levine R D 2006 Proc. Natl. Acad. Sci. USA 103 6793 |
[24] | Barth I, Manz J, Shigeta Y, and Yagi K 2006 J. Am. Chem. Soc. 28 7043 |
[25] | Nobusada K and Yabana K 2007 Phys. Rev. A 75 032518 |
[26] | Zhang X F, Zhu X S, Wang D, Li L, Liu X, Liao Q, Lan P F, and Lu P X 2019 Phys. Rev. A 99 013414 |
[27] | Camp S, Schafer K J, and Gaarde M B 2015 Phys. Rev. A 92 013404 |
[28] | Yuan K J and Bandrauk A D 2013 Phys. Rev. A 88 013417 |
[29] | Bandrauk A D and Yuan K J 2016 Mol. Phys. 114 344 |
[30] | Yuan K J and Bandrauk A D 2015 Phys. Rev. A 92 063401 |
[31] | Sederberg S, Kong F, Hufnagel F, Zhang C, Karimi E, and Corkum P B 2020 Nat. Photon. 14 680 |
[32] | Lei Z X, Xu Q Y, Yang Z J, He Y L, and Guo J 2022 Chin. Phys. B 31 063202 |
[33] | Pratt S T and Dehmer P M 1982 J. Chem. Phys. 76 3433 |
[34] | Feit M D and Fleck Jr J A 1983 J. Chem. Phys. 78 301 |
[35] | Bandrauk A D and Lu H 2013 J. Theor. Comput. Chem. 12 1340001 |
[36] | Jefimenko O D 1990 Am. J. Phys. 58 505 |
[37] | Kunitski M, Eicke N, Huber P et al. 2019 Nat. Commun. 10 1 |
[38] | Xu Q Y, Yang Z J, He Y L, Gao F Y, Lu H Z, and Guo J 2021 Opt. Express 29 32312 |
[39] | Zuo T, Bandrauk A D, and Corkum P B 1996 Chem. Phys. Lett. 259 313 |
[40] | Zhang H D, Ben S, Xu T T, Song K L, Tian Y R, Xu Q Y, Zhang S Q, Guo J, and Liu X S 2018 Phys. Rev. A 98 013422 |
[41] | Ansari Z, Böttcher M, Manschwetus B 2008 New J. Phys. 10 093027 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|