GENERAL |
|
|
|
|
Efficiency Bound of Learning with Coarse Graining |
Minghao Li, Shihao Xia, Youlin Wang, Minglong Lv, Jincan Chen, and Shanhe Su* |
Department of Physics, Xiamen University, Xiamen 361005, China |
|
Cite this article: |
Minghao Li, Shihao Xia, Youlin Wang et al 2023 Chin. Phys. Lett. 40 110501 |
|
|
Abstract A thermodynamic formalism describing the efficiency of information learning is proposed, which is applicable to stochastic thermodynamic systems with multiple internal degrees of freedom. The learning rate, entropy production rate and entropy flow from the system to the environment under coarse-grained dynamics are derived. The Cauchy–Schwarz inequality is applied to demonstrate the lower bound on the entropy production rate of an internal state. The inequality of the entropy production rate is tighter than the Clausius inequality, leading to a derivative of the upper bound on the efficiency of learning. The results are verified in cellular networks with information processes.
|
|
Received: 06 August 2023
Published: 25 October 2023
|
|
|
|
|
|
[1] | Lu J C, Wang Z, Peng J B, Wang C, Jiang J H, and Ren J 2022 Phys. Rev. B 105 115428 |
[2] | Pal A, Reuveni S, and Rahav S 2021 Phys. Rev. Res. 3 L032034 |
[3] | Barato A C and Seifert U 2015 Phys. Rev. Lett. 114 158101 |
[4] | Pietzonka P and Seifert U 2018 Phys. Rev. Lett. 120 190602 |
[5] | Proesmans K, Ehrich J, and Bechhoefer J 2020 Phys. Rev. Lett. 125 100602 |
[6] | Horowitz J M and Gingrich T R 2020 Nat. Phys. 16 15 |
[7] | Ertel B, van der Meer J, and Seifert U 2022 Phys. Rev. E 105 044113 |
[8] | Lang A H, Fisher C K, Mora T, and Mehta P 2014 Phys. Rev. Lett. 113 148103 |
[9] | Hasegawa Y and Van Vu T 2019 Phys. Rev. E 99 062126 |
[10] | Timpanaro A M, Guarnieri G, Goold J, and Landi G T 2019 Phys. Rev. Lett. 123 090604 |
[11] | Chiuchiù D and Pigolotti S 2018 Phys. Rev. E 97 032109 |
[12] | Landauer R 1961 IBM J. Res. Dev. 5 183 |
[13] | Toyabe S, Sagawa T, Ueda M, Muneyuki E, and Sano M 2010 Nat. Phys. 6 988 |
[14] | Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, and Lutz E 2012 Nature 483 187 |
[15] | Yan L, Xiong T, Rehan K, Zhou F, Liang D, Chen L, Zhang J, Yang W, Ma Z, and Feng M 2018 Phys. Rev. Lett. 120 210601 |
[16] | Gingrich T R and Horowitz J M 2017 Phys. Rev. Lett. 119 170601 |
[17] | Lynn C W, Holmes C M, Bialek W, and Schwab D J 2022 Phys. Rev. E 106 034102 |
[18] | Gingrich T R, Horowitz J M, Perunov N, and England J L 2016 Phys. Rev. Lett. 116 120601 |
[19] | Lynn C W, Holmes C M, Bialek W, and Schwab D J 2022 Phys. Rev. Lett. 129 118101 |
[20] | Lin Z B, Yang Y Y, Li W, Wang J H, and He J Z 2020 Phys. Rev. E 101 022117 |
[21] | Cao Y S, Wang H L, Ouyang Q, and Tu Y H 2015 Nat. Phys. 11 772 |
[22] | Van Vu T and Hasegawa Y 2021 Phys. Rev. Lett. 126 010601 |
[23] | Horowitz J M and Esposito M 2014 Phys. Rev. X 4 031015 |
[24] | Esposito M 2012 Phys. Rev. E 85 041125 |
[25] | Hartich D, Barato A C, and Seifert U 2014 J. Stat. Mech.: Theory Exp. 2014 P02016 |
[26] | Shiraishi N and Saito K 2019 J. Stat. Phys. 174 433 |
[27] | Allahverdyan A E, Janzing D, and Mahler G 2009 J. Stat. Mech.: Theory Exp. 2009 P09011 |
[28] | Barato A, Chetrite R, Faggionato A, and Gabrielli D 2019 J. Stat. Mech.: Theory Exp. 2019 084017 |
[29] | Barato A C, Hartich D, and Seifert U 2014 New J. Phys. 16 103024 |
[30] | Barato A, Hartich D, and Seifert U 2013 Phys. Rev. E 87 042104 |
[31] | Su S, Chen J, Wang Y, Chen J, and Uchiyama C 2022 arXiv:2209.08096 [cond-mat.stat-mech] |
[32] | Zhen Y Z, Egloff D, Modi K, and Dahlsten O 2021 Phys. Rev. Lett. 127 190602 |
[33] | Goldt S and Seifert U 2017 Phys. Rev. Lett. 118 010601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|