Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 110305    DOI: 10.1088/0256-307X/40/11/110305
GENERAL |
Topological Plasma Transport from a Diffusion View
Zhoufei Liu and Jiping Huang*
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
Cite this article:   
Zhoufei Liu and Jiping Huang 2023 Chin. Phys. Lett. 40 110305
Download: PDF(6404KB)   PDF(mobile)(6438KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent studies have identified plasma as a topological material. Yet, these researches often depict plasma as a fluid governed by electromagnetic fields, i.e., a classical wave system. Indeed, plasma transport can be characterized by a unique diffusion process distinguished by its collective behaviors. We adopt a simplified diffusion-migration method to elucidate the topological plasma transport. Drawing parallels to the thermal conduction-convection system, we introduce a double-ring model to investigate the plasma density behaviors in the anti-parity-time reversal (APT) unbroken and broken phases. Subsequently, by augmenting the number of rings, we have established a coupled ring chain structure. This structure serves as a medium for realizing the APT symmetric one-dimensional (1D) reciprocal model, representing the simplest tight-binding model with a trivial topology. To develop a model featuring topological properties, we should modify the APT symmetric 1D reciprocal model from the following two aspects: hopping amplitude and onsite potential. From the hopping amplitude, we incorporate the non-reciprocity to facilitate the non-Hermitian skin effect, an intrinsic non-Hermitian topology. Meanwhile, from the onsite potential, the quasiperiodic modulation has been adopted onto the APT symmetric 1D reciprocal model. This APT symmetric 1D Aubry–André–Harper model is of topological nature. Additionally, we suggest the potential applications for these diffusive plasma topological states. This study establishes a diffusion-based approach to realize topological states in plasma, potentially inspiring further advancements in plasma physics.
Received: 07 October 2023      Express Letter Published: 31 October 2023
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  52.30.-q (Plasma dynamics and flow)  
  71.23.Ft (Quasicrystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/110305       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/110305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhoufei Liu and Jiping Huang
[1]Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley Interscience)
[2]Chen F F 1974 Introduction to Plasma Physics and Controlled Fusion (Switzerland: Springer)
[3] Zheng B C, Fu Y Y, Wang K L, Schuelke T, and Fan Q H 2021 Plasma Sources Sci. Technol. 30 035019
[4] Huang C W, Chen Y C, and Nishimura Y 2015 IEEE Trans. Plasma Sci. 43 675
[5] Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu R K Y, Tian X B, Tan W C, and Chu P K 2019 J. Appl. Phys. 125 063302
[6] Zhang Z R and Huang J P 2022 Chin. Phys. Lett. 39 075201
[7] Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H, and Huang J P 2023 Nat. Rev. Phys. 5 218
[8]Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F, and Huang J P 2023 Rev. Mod. Phys. (in press)
[9] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[10] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[11] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[12] König M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, and Zhang S C 2007 Science 318 766
[13] Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[14] Lu L, Joannopoulos J D, and Soljačić M 2014 Nat. Photonics 8 821
[15] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[16] Cao J H, Kavokin A V, and Nalitov A V 2022 Prog. Electromagn. Res. 173 141
[17] Xue H R, Yang Y H, and Zhang B L 2022 Nat. Rev. Mater. 7 974
[18] Tsang L, Liao T H, and Tan S R 2021 Prog. Electromagn. Res. 171 137
[19] Jia D, Wang Y, Ge Y, Yuan S Q, and Sun H X 2021 Prog. Electromagn. Res. 172 13
[20] Zhang C X, Li T J, Xu L J, and Huang J P 2023 Chin. Phys. Lett. 40 054401
[21] Yin H Y and Fan C Z 2023 Chin. Phys. Lett. 40 077801
[22] He Z G, Yuan K, Xiong G H, and Wang J 2023 Chin. Phys. Lett. 40 104402
[23] Wang Y, Han T C, Liang D F, and Deng L J 2023 Chin. Phys. Lett. 40 104101
[24] Lou Q and Xia M G 2023 Chin. Phys. Lett. 40 094401
[25] Li Y and Li J X 2021 Chin. Phys. Lett. 38 030501
[26] Ju R, Xu G Q, Xu L J, Qi M H, Wang D, Cao P C, Xi R, Shou Y F, Chen H S, Qiu C W, and Li Y 2023 Adv. Mater. 35 2209123
[27] Liu Z F, Xu L J, and Huang J P 2022 arXiv:2206.09837 [physics.app-ph]
[28] Liu Z F 2023 arXiv:2309.09681 [physics.app-ph]
[29] Xu G Q, Li Y, Li W, Fan S H, and Qiu C W 2021 Phys. Rev. Lett. 127 105901
[30] Xu G Q, Yang Y H, Zhou X, Chen H S, Alù A, and Qiu C W 2022 Nat. Phys. 18 450
[31] Xu G Q, Zhou X, Yang S H, Wu J, and Qiu C W 2023 Nat. Commun. 14 3252
[32] Xu L J and Huang J P 2021 Europhys. Lett. 134 60001
[33] Xu L J, Wang J, Dai G L, Yang S, Yang F B, Wang G, and Huang J P 2021 Int. J. Heat Mass Transfer 165 120659
[34] Parker J B, Burby J W, Marston J B, and Tobias S M 2020 Phys. Rev. Res. 2 033425
[35] Parker J B, Burby J W, Marston J B, Tobias S M, and Zhu Z Y 2020 Phys. Rev. Lett. 124 195001
[36] Fu Y C and Qin H 2021 Nat. Commun. 12 3924
[37] Gao W L, Yang B, Lawrence M, Fang F Z, Beri B, and Zhang S 2016 Nat. Commun. 7 12435
[38] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J L, Alù A, Fan S H, and Qiu C W 2019 Science 364 170
[39] Li Z P, Cao G T, Li C H, Dong S H, Deng Y, Liu X K, Ho J S, and Qiu C W 2021 Prog. Electromagn. Res. 171 1
[40] Cao P C, Li Y, Peng Y G, Qi M H, Huang W X, Li P Q, and Zhu X F 2021 Commun. Phys. 4 230
[41] Huang Q K L, Liu Y K, Cao P C, Zhu X F, and Li Y 2023 Chin. Phys. Lett. 40 106601
[42] Hu B L, Zhang Z W, Yue Z C, Liao D W, Liu Y M, Zhang H X, Cheng Y, Liu X J, and Christensen J 2023 Phys. Rev. Lett. 131 066601
[43] Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
[44] Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801
[45] Yan Q H, Chen H S, and Yang Y H 2021 Prog. Electromagn. Res. 172 33
[46] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[47] Cao P C, Peng Y G, Li Y, and Zhu X F 2022 Chin. Phys. Lett. 39 057801
[48]Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133
[49] Harper P G 1955 Proc. Phys. Soc. Sect. A 68 874
[50] Liu Z F and Huang J P 2022 arXiv:2208.06765 [physics.app-ph]
[51] Longhi S 2019 Phys. Rev. Lett. 122 237601
[52] Longhi S 2019 Phys. Rev. B 100 125157
[53] Budich J C and Bergholtz E J 2020 Phys. Rev. Lett. 125 180403
[54] Jin P, Xu L J, Xu G Q, Li J X, Qiu C W, and Huang J P 2023 Adv. Mater. (in press)
Related articles from Frontiers Journals
[1] Jie Ren. Geometric Thermoelectric Pump: Energy Harvesting beyond Seebeck and Pyroelectric Effects[J]. Chin. Phys. Lett., 2023, 40(9): 110305
[2] Heng Fan. Simulation of Projective Non-Abelian Anyons for Quantum Computation[J]. Chin. Phys. Lett., 2023, 40(7): 110305
[3] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 110305
[4] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 110305
[5] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 110305
[6] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 110305
[7] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 110305
[8] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 110305
[9] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 110305
[10] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 110305
[11] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 110305
[12] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 110305
[13] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 110305
[14] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 110305
[15] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 110305
Viewed
Full text


Abstract