Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 110302    DOI: 10.1088/0256-307X/40/11/110302
GENERAL |
Dynamically Characterizing the Structures of Dirac Points via Wave Packets
Dan-Dan Liang1,2, Xin Shen3*, and Zhi Li1,2*
1Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
2Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
3College of Sciences, China Jiliang University, Hangzhou 310018, China
Cite this article:   
Dan-Dan Liang, Xin Shen, and Zhi Li 2023 Chin. Phys. Lett. 40 110302
Download: PDF(4101KB)   PDF(mobile)(4105KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological non-trivial band structures are the core problem in the field of topological materials. We investigate the topological band structure in a system with controllable Dirac points from the perspective of wave packet dynamics. By adding a third-nearest-neighboring coupling to the graphene model, additional pairs of Dirac points emerge. The emergence and annihilation of Dirac points result in hybrid and parabolic points, and we show that these band structures can be revealed by the dynamical behaviors of wave packets. In particular, for the gapped hybrid point, the motion of the wave packet shows a one-dimensional Zitterbewegung motion. Furthermore, we also show that the winding number associated with the Dirac point and parabolic point can be determined via the center of mass and spin texture of wave packets, respectively. The results of this work could motivate new experimental methods to characterize a system's topological signatures through wave packet dynamics, which may also find applications in systems of other exotic topological materials.
Received: 06 July 2023      Published: 18 October 2023
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Pm (Relativistic wave equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/110302       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/110302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dan-Dan Liang
Xin Shen
and Zhi Li
[1]Ashcroft N W and Mermin N D 1976 Solid State Physics (Saunders College Publishing)
[2] Wen X G 2017 Rev. Mod. Phys. 89 041004
[3] Bansil A, Lin H, and Das T 2016 Rev. Mod. Phys. 88 021004
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[7] Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
[8] Wan X G, Turner A M, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101
[9] Lu H Z and Shen S Q 2017 Front. Phys. 12 127201
[10] Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, and Zhang B L 2015 Phys. Rev. Lett. 114 114301
[11] Peri V, Song Z D, Serra-Garcia M, Engeler P, Queiroz R, Huang X, Deng W, Liu Z, Bernevig B A, and Huber S D 2020 Science 367 797
[12] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[13] Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2018 Adv. Phys. 67 253
[14] Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C, and Yao N Y 2021 Rev. Mod. Phys. 93 025001
[15] Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[16] Shen X and Li Z 2018 Phys. Rev. A 97 013608
[17] Shen X, Zhu Y Q, and Li Z 2022 Phys. Rev. B 106 L180301
[18] Chiu C K, Teo J C Y, Schnyder A P, and Ryu S 2016 Rev. Mod. Phys. 88 035005
[19] Tarruell L, Greif D, Uehlinger T, Jotzu G, and Esslinger T 2012 Nature 483 302
[20] Duca L, Li T, Reitter M, Bloch I, Schleier-Smith M, and Schneider U 2015 Science 347 288
[21] Nielsen H and Ninomiya M 1983 Phys. Lett. B 130 389
[22] Bena C and Simon L 2011 Phys. Rev. B 83 115404
[23] Montambaux G 2012 Eur. Phys. J. B 85 375
[24] Montambaux G, Lim L K, Fuchs J N, and Piéchon F 2018 Phys. Rev. Lett. 121 256402
[25]Schrödinger E 1930 Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24 418
[26] Cooper N R, Dalibard J, and Spielman I B 2019 Rev. Mod. Phys. 91 015005
[27] Zhang Q, Gong J B, and Oh C H 2013 Chin. Phys. Lett. 30 080301
[28] Deng D L, Wang S T, Sun K, and Duan L M 2018 Chin. Phys. Lett. 35 013701
[29] Guo G F, Bao X X, Tan L, and Gu H Q 2021 Chin. Phys. Lett. 38 040302
[30] Li Z, Cao H, and Fu L B 2015 Phys. Rev. A 91 023623
[31] Li Z, Wang H Q, Zhang D W, Zhu S L, and Xing D Y 2016 Phys. Rev. A 94 043617
[32] Shen X, Zhang D W, Yan H, Li Z, and Zhu S L 2020 Phys. Rev. Res. 2 013037
[33] Merkl M, Zimmer F E, Juzeliūnas G, and öhberg P 2008 Europhys. Lett. 83 54002
[34] Zawadzki W and Rusin T M 2011 J. Phys.: Condens. Matter 23 143201
[35] Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, and Zhang J 2023 Nature 615 231
[36] Fallani L, Sarlo L D, Lye J E, Modugno M, Saers R, Fort C, and Inguscio M 2004 Phys. Rev. Lett. 93 140406
[37] Kling S, Salger T, Grossert C, and Weitz M 2010 Phys. Rev. Lett. 105 215301
[38] LeBlanc L J, Beeler M C, Jiménez-Garcĺa K, Perry A R, Sugawa S, Williams R A, and Spielman I B 2013 New J. Phys. 15 073011
[39] Alba E, Fernandez-Gonzalvo X, Mur-Petit J, Pachos J K, and Garcia-Ripoll J J 2011 Phys. Rev. Lett. 107 235301
[40] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, and Pan J W 2016 Science 354 83
[41] Hasan M, Madasu C S, Rathod K D, Kwong C C, Miniatura C, Chevy F, and Wilkowski D 2022 Phys. Rev. Lett. 129 130402
[42] Shen X, Wang F, Li Z, and Wu Z 2019 Phys. Rev. A 100 062514
[43] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, and Weitenberg C 2016 Science 352 1091
[44] Li T, Duca L, Reitter M, Grusdt F, Demler E, Endres M, Schleier-Smith M, Bloch I, and Schneider U 2016 Science 352 1094
[45] Xie B Y, Wang H X, Zhang X J, Zhan P, Jiang J H, Lu M H, and Chen Y F 2021 Nat. Rev. Phys. 3 520
[46] Po H C, Watanabe H, and Vishwanath A 2018 Phys. Rev. Lett. 121 126402
[47] Okuma N and Sato M 2023 Annu. Rev. Condens. Matter Phys. 14 83
[48] Herrera M A J and Bercioux D 2023 Commun. Phys. 6 42
[49] Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y, Liu X J, Chen S, and Pan J W 2018 Phys. Rev. Lett. 121 250403
[50] Wang C, Zhang P, Chen X, Yu J, and Zhai H 2017 Phys. Rev. Lett. 118 185701
Related articles from Frontiers Journals
[1] Peng Qian and Dong E. Liu. A Hierarchy in Majorana Non-Abelian Tests and Hidden Variable Models[J]. Chin. Phys. Lett., 2023, 40(10): 110302
[2] Manchao Zhang, Jie Zhang, Wenbo Su, Xueying Yang, Chunwang Wu, Yi Xie, Wei Wu, and Pingxing Chen. Extension of Linear Response Regime in Weak-Value Amplification Technique[J]. Chin. Phys. Lett., 2023, 40(4): 110302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 110302
[4] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 110302
[5] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 110302
[6] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 110302
[7] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 110302
[8] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 110302
[9] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 110302
[10] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 110302
[11] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 110302
[12] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 110302
[13] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 110302
[14] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 110302
[15] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 110302
Viewed
Full text


Abstract