Chin. Phys. Lett.  2023, Vol. 40 Issue (11): 110201    DOI: 10.1088/0256-307X/40/11/110201
GENERAL |
Splitting of Degenerate Superatomic Molecular Orbitals Determined by Point Group Symmetry
Rui Wang1, Jiarui Li1, Zhonghua Liu1, Chenxi Wan1,2, and Zhigang Wang1,2,3*
1Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
2Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
3Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
Cite this article:   
Rui Wang, Jiarui Li, Zhonghua Liu et al  2023 Chin. Phys. Lett. 40 110201
Download: PDF(3218KB)   PDF(mobile)(3682KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We first confirm an idea obtained from first-principles calculations, which is in line with symmetry theory: Although superatomic molecular orbitals (SAMOs) can be classified according to their angular momentum similar to atomic orbitals, SAMOs with the same angular momentum split due to the point group symmetry of superatoms. Based on this idea, we develop a method to quantitatively modulate the splitting spacing of molecular orbitals in a superatom by changing its structural symmetry or by altering geometric parameters with the same symmetry through expansion and compression processes. Moreover, the modulation of the position crossover is achieved between the lowest unoccupied molecular orbital and the highest occupied molecular orbital originating from the splitting of different angular momenta, leading to an effective reduction in system energy. This phenomenon is in line with the implication of the Jahn–Teller effect. This work provides insights into understanding and regulating the electronic structures of superatoms.
Received: 03 August 2023      Published: 15 November 2023
PACS:  02.20.-a (Group theory)  
  31.70.-f (Effects of atomic and molecular interactions on electronic structure)  
  36.40.-c (Atomic and molecular clusters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/11/110201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I11/110201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui Wang
Jiarui Li
Zhonghua Liu
Chenxi Wan
and Zhigang Wang
[1] Bergeron D E, Castleman Jr A W, Morisato T, and Khanna S N 2004 Science 304 84
[2] Feng M, Zhao J, and Petek H 2008 Science 320 359
[3] Luo Z X and Castleman A W 2014 Acc. Chem. Res. 47 2931
[4] Gao Y, Bulusu S, and Zeng X C 2005 J. Am. Chem. Soc. 127 15680
[5] Jena P and Sun Q 2018 Chem. Rev. 118 5755
[6] Inoshita T, Ohnishi S, and Oshiyama A 1986 Phys. Rev. Lett. 57 2560
[7] Khanna S N and Jena P 1995 Phys. Rev. B 51 13705
[8] Pauli W 1925 Z. Phys. 31 765
[9]Hund F 1981 Linienspektren und Periodisches System der Elemente (Springer: Berlin)
[10]Cowan R D 1981 The Theory of Atomic Structure and Spectra (Oakland, CA: University of California Press)
[11]Sobelman I I 1992 Atomic Spectra and Radiative Transitions (New York: Springer-Verlag)
[12] Reber A C and Khanna S N 2017 Acc. Chem. Res. 50 255
[13] Häkkinen H, Moseler M, Kostko O, Morgner N, Hoffmann M A, and von Issendorff B 2004 Phys. Rev. Lett. 93 093401
[14] Jiang D E and Walter M 2011 Phys. Rev. B 84 193402
[15] Kaappa S, Malola S, and Hakkinen H 2018 J. Phys. Chem. A 122 8576
[16] Kang S Y, Nan Z A, and Wang Q M 2022 J. Phys. Chem. Lett. 13 291
[17]Cotton F A 1991 Chemical Applications of Group Theory (Chichester: John Wiley & Sons)
[18] Gelessus A, Thiel W, and Weber W 1995 J. Chem. Educ. 72 505
[19] Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y, and Cohen M L 1984 Phys. Rev. Lett. 52 2141
[20] Guha S and Nakamoto K 2005 Coord. Chem. Rev. 249 1111
[21] Rioux F 1994 J. Chem. Educ. 71 464
[22] Jung J, Kim H, and Han Y K 2011 J. Am. Chem. Soc. 133 6090
[23] Omoda T, Takano S, and Tsukuda T 2021 Small 17 e2001439
[24] Wang R, Yang X, Huang W, Liu Z, Zhu Y, Liu H, and Wang Z 2023 iScience 26 106281
[25] Zhang L, Wang Y, Lv J, and Ma Y 2017 Nat. Rev. Mater. 2 17005
[26] Yakobson B I, Brabec C J, and Bernholc J 1996 Phys. Rev. Lett. 76 2511
[27] Cao G X and Chen X 2006 Phys. Rev. B 73 155435
[28] Xiao T and Liao K 2003 Nanotechnology 14 1197
[29] Prinzbach H, Weiler A, Landenberger P, Wahl F, Worth J, TScott L T, Gelmont M, Olevano D, and Issendorff B V 2000 Nature 407 60
[30] Dunk P W, Kaiser N K, Mulet-Gas M, Rodriguez-Fortea A, Poblet J M, Shinohara H, Hendrickson C L, Marshall A G, and Kroto H W 2012 J. Am. Chem. Soc. 134 9380
[31] Adams G B, Sankey O F, Page J B, and O'Keeffe M 1993 Chem. Phys. 176 61
[32] Galli G, Gygi F, and Golaz J C 1998 Phys. Rev. B 57 1860
[33] Yang Y F, Klaiman S, Gromov E V, and Cederbaum L S 2018 Phys. Chem. Chem. Phys. 20 17434
[34] Manna D and Martin J M 2016 J. Phys. Chem. A 120 153
[35]Carter R L 1997 Molecular Symmetry and Group Theory (New York: John Wiley & Sons)
[36] Fowler P W and Woolrich J 1986 Chem. Phys. Lett. 127 78
[37] Miura K, Kamiya S, and Sasaki N 2003 Phys. Rev. Lett. 90 055509
[38] Wang R, Liu Z, Yu F, Li J, and Wang Z 2023 J. Chem. Phys. 158 244703
[39] Li H X and Branicio P S 2019 Carbon 152 727
[40] Jahn H A and Teller E 1937 Proc. R. Soc. A 161 220
[41] Pearson R G 1975 Proc. Natl. Acad. Sci. USA 72 2104
[42] Halcrow M A 2013 Chem. Soc. Rev. 42 1784
Related articles from Frontiers Journals
[1] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 110201
[2] XIN Xiang-Peng, CHEN Yong. A Method to Construct the Nonlocal Symmetries of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2013, 30(10): 110201
[3] Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee. Infrared Spectra of PH3 and NF3: An Algebraic Approach[J]. Chin. Phys. Lett., 2013, 30(7): 110201
[4] YAO Ruo-Xia, LOU Sen-Yue,. A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems[J]. Chin. Phys. Lett., 2008, 25(6): 110201
[5] B. A. Tay, Hishamuddin Zainuddin. Orbit Classification of Qutrit via the Gram Matrix[J]. Chin. Phys. Lett., 2008, 25(6): 110201
[6] WANG Li-Zhen, GOU Ming, QU Chang-Zheng,. Conditional Lie Backlund Symmetries of Hamilton--Jacobi Equations[J]. Chin. Phys. Lett., 2007, 24(12): 110201
[7] M. T. Chefrour. Algebraic Treatment of the MIC-Kepler System in Spherical Coordinates[J]. Chin. Phys. Lett., 2007, 24(8): 110201
[8] S. A. Alavi. General Noncommuting Curvilinear Coordinates and Fluid Mechanics[J]. Chin. Phys. Lett., 2006, 23(10): 110201
[9] TIAN Li-Jun, YANG Guo-Hong, ZHANG Hong-Biao, HOU Jing-Min. Reduced Properties and Applications of Y(sl(2)) Algebra for a Two-Spin System[J]. Chin. Phys. Lett., 2006, 23(7): 110201
[10] TIAN Li-Jun, JIN Shuo, ZHANG Hong-Biao, XUE Kang. A Realization and Truncation of Yangian Algebra in the Generalized Hydrogen Atom with a U(1) Monopole[J]. Chin. Phys. Lett., 2004, 21(5): 110201
[11] XU Jing-Bo, ZOU Xu-Bo. Dynamical Algebraic Approach to the Modified Jaynes-Cummings Model[J]. Chin. Phys. Lett., 2001, 18(1): 110201
[12] BAO Cheng-Guang, SHI Ting-Yun. Qualitative Analysis of Low-Lying Resonances of the Dipositronium Emerging from Ps-Ps and Ps-Ps* Collisions[J]. Chin. Phys. Lett., 2000, 17(5): 110201
[13] BAO Cheng-Guang. A Qualitative Analysis of Channel Wave Functions and Widths of the Low-lying States of 6Li[J]. Chin. Phys. Lett., 2000, 17(1): 110201
[14] BAO Cheng-guang, SHI Ting-yun. Existence of Two Higher L=0 Bound States of the Dipositroniums[J]. Chin. Phys. Lett., 1999, 16(4): 110201
[15] SU Ka-lin. The Most General Corrdinate Transformation Between the Hydrogen Atom and Harmonic Oscillator in Arbitrary Dimensions[J]. Chin. Phys. Lett., 1997, 14(10): 110201
Viewed
Full text


Abstract