GENERAL |
|
|
|
|
Splitting of Degenerate Superatomic Molecular Orbitals Determined by Point Group Symmetry |
Rui Wang1, Jiarui Li1, Zhonghua Liu1, Chenxi Wan1,2, and Zhigang Wang1,2,3* |
1Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China 2Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China 3Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
|
|
Cite this article: |
Rui Wang, Jiarui Li, Zhonghua Liu et al 2023 Chin. Phys. Lett. 40 110201 |
|
|
Abstract We first confirm an idea obtained from first-principles calculations, which is in line with symmetry theory: Although superatomic molecular orbitals (SAMOs) can be classified according to their angular momentum similar to atomic orbitals, SAMOs with the same angular momentum split due to the point group symmetry of superatoms. Based on this idea, we develop a method to quantitatively modulate the splitting spacing of molecular orbitals in a superatom by changing its structural symmetry or by altering geometric parameters with the same symmetry through expansion and compression processes. Moreover, the modulation of the position crossover is achieved between the lowest unoccupied molecular orbital and the highest occupied molecular orbital originating from the splitting of different angular momenta, leading to an effective reduction in system energy. This phenomenon is in line with the implication of the Jahn–Teller effect. This work provides insights into understanding and regulating the electronic structures of superatoms.
|
|
Received: 03 August 2023
Published: 15 November 2023
|
|
PACS: |
02.20.-a
|
(Group theory)
|
|
31.70.-f
|
(Effects of atomic and molecular interactions on electronic structure)
|
|
36.40.-c
|
(Atomic and molecular clusters)
|
|
|
|
|
[1] | Bergeron D E, Castleman Jr A W, Morisato T, and Khanna S N 2004 Science 304 84 |
[2] | Feng M, Zhao J, and Petek H 2008 Science 320 359 |
[3] | Luo Z X and Castleman A W 2014 Acc. Chem. Res. 47 2931 |
[4] | Gao Y, Bulusu S, and Zeng X C 2005 J. Am. Chem. Soc. 127 15680 |
[5] | Jena P and Sun Q 2018 Chem. Rev. 118 5755 |
[6] | Inoshita T, Ohnishi S, and Oshiyama A 1986 Phys. Rev. Lett. 57 2560 |
[7] | Khanna S N and Jena P 1995 Phys. Rev. B 51 13705 |
[8] | Pauli W 1925 Z. Phys. 31 765 |
[9] | Hund F 1981 Linienspektren und Periodisches System der Elemente (Springer: Berlin) |
[10] | Cowan R D 1981 The Theory of Atomic Structure and Spectra (Oakland, CA: University of California Press) |
[11] | Sobelman I I 1992 Atomic Spectra and Radiative Transitions (New York: Springer-Verlag) |
[12] | Reber A C and Khanna S N 2017 Acc. Chem. Res. 50 255 |
[13] | Häkkinen H, Moseler M, Kostko O, Morgner N, Hoffmann M A, and von Issendorff B 2004 Phys. Rev. Lett. 93 093401 |
[14] | Jiang D E and Walter M 2011 Phys. Rev. B 84 193402 |
[15] | Kaappa S, Malola S, and Hakkinen H 2018 J. Phys. Chem. A 122 8576 |
[16] | Kang S Y, Nan Z A, and Wang Q M 2022 J. Phys. Chem. Lett. 13 291 |
[17] | Cotton F A 1991 Chemical Applications of Group Theory (Chichester: John Wiley & Sons) |
[18] | Gelessus A, Thiel W, and Weber W 1995 J. Chem. Educ. 72 505 |
[19] | Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y, and Cohen M L 1984 Phys. Rev. Lett. 52 2141 |
[20] | Guha S and Nakamoto K 2005 Coord. Chem. Rev. 249 1111 |
[21] | Rioux F 1994 J. Chem. Educ. 71 464 |
[22] | Jung J, Kim H, and Han Y K 2011 J. Am. Chem. Soc. 133 6090 |
[23] | Omoda T, Takano S, and Tsukuda T 2021 Small 17 e2001439 |
[24] | Wang R, Yang X, Huang W, Liu Z, Zhu Y, Liu H, and Wang Z 2023 iScience 26 106281 |
[25] | Zhang L, Wang Y, Lv J, and Ma Y 2017 Nat. Rev. Mater. 2 17005 |
[26] | Yakobson B I, Brabec C J, and Bernholc J 1996 Phys. Rev. Lett. 76 2511 |
[27] | Cao G X and Chen X 2006 Phys. Rev. B 73 155435 |
[28] | Xiao T and Liao K 2003 Nanotechnology 14 1197 |
[29] | Prinzbach H, Weiler A, Landenberger P, Wahl F, Worth J, TScott L T, Gelmont M, Olevano D, and Issendorff B V 2000 Nature 407 60 |
[30] | Dunk P W, Kaiser N K, Mulet-Gas M, Rodriguez-Fortea A, Poblet J M, Shinohara H, Hendrickson C L, Marshall A G, and Kroto H W 2012 J. Am. Chem. Soc. 134 9380 |
[31] | Adams G B, Sankey O F, Page J B, and O'Keeffe M 1993 Chem. Phys. 176 61 |
[32] | Galli G, Gygi F, and Golaz J C 1998 Phys. Rev. B 57 1860 |
[33] | Yang Y F, Klaiman S, Gromov E V, and Cederbaum L S 2018 Phys. Chem. Chem. Phys. 20 17434 |
[34] | Manna D and Martin J M 2016 J. Phys. Chem. A 120 153 |
[35] | Carter R L 1997 Molecular Symmetry and Group Theory (New York: John Wiley & Sons) |
[36] | Fowler P W and Woolrich J 1986 Chem. Phys. Lett. 127 78 |
[37] | Miura K, Kamiya S, and Sasaki N 2003 Phys. Rev. Lett. 90 055509 |
[38] | Wang R, Liu Z, Yu F, Li J, and Wang Z 2023 J. Chem. Phys. 158 244703 |
[39] | Li H X and Branicio P S 2019 Carbon 152 727 |
[40] | Jahn H A and Teller E 1937 Proc. R. Soc. A 161 220 |
[41] | Pearson R G 1975 Proc. Natl. Acad. Sci. USA 72 2104 |
[42] | Halcrow M A 2013 Chem. Soc. Rev. 42 1784 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|