Chin. Phys. Lett.  2023, Vol. 40 Issue (10): 104401    DOI: 10.1088/0256-307X/40/10/104401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Enhanced Thermal Invisibility Effect in an Isotropic Thermal Cloak with Bulk Materials
Qingru Shan, Chunrui Shao*, Jun Wang*, and Guodong Xia
MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
Cite this article:   
Qingru Shan, Chunrui Shao, Jun Wang et al  2023 Chin. Phys. Lett. 40 104401
Download: PDF(10937KB)   PDF(mobile)(10966KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A thermal cloak is well known for hiding objects from thermal signature. A bilayer thermal cloak made from inner insulation layer and outer isotropic homogeneous layer could realize such thermal protection. However, its thermal protection performance can be suppressed for low-thermal-conductivity surrounding media. We propose a tri-layer thermal cloak model by adding a transition layer between the insulation layer and the outer layer. Numerical simulations and theoretical analysis show that, under the same geometry size and surrounding thermal conductivity, the performance of the thermal cloak can be significantly enhanced by introducing a transition layer with higher thermal conductivity and an outer-layer with lower thermal conductivity. The tri-layer cloak proposed provides a design guidance to realize better thermal protection using isotropic bulk materials.
Received: 15 August 2023      Published: 03 October 2023
PACS:  44.10.+i (Heat conduction)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/10/104401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I10/104401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qingru Shan
Chunrui Shao
Jun Wang
and Guodong Xia
[1] Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907
[2] Chen T Y, Weng C N, and Chen J S 2008 Appl. Phys. Lett. 93 114103
[3] Gao Y 2021 Chin. Phys. Lett. 38 020501
[4] Wang M, Huang S, Hu R, and Luo X 2019 Chin. Phys. B 28 087804
[5] Xu L J, Wang J, Dai G L, Yang S, Yang F B, Wang G, and Huang J P 2021 Int. J. Heat Mass Transfer 165 120659
[6] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, and Huang J P 2015 Phys. Rev. Lett. 115 195503
[7] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[8] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[9] Hou Q W, Li J C, and Zhao X P 2021 Chin. Phys. Lett. 38 010503
[10] Dai G L, Shang J, and Huang J P 2018 Phys. Rev. E 97 022129
[11] Yu G X, Lin Y F, Zhang G Q, Yu Z, Yu L L, and Su J 2011 Front. Phys. 6 70
[12] Shen X Y, Li Y, Jiang C R, Ni Y S, and Huang J P 2016 Appl. Phys. Lett. 109 031907
[13] He X and Wu L Z 2013 Appl. Phys. Lett. 102 211912
[14] Li J Y, Gao Y, and Huang J P 2010 J. Appl. Phys. 108 074504
[15] Liu Y X, Guo W L, and Han T C 2017 Int. J. Heat Mass Transfer 115 1
[16] Guenneau S, Amra C, and Veynante D 2012 Opt. Express 20 8207
[17] Schittny R, Kadic M, Guenneau S, and Wegener M 2013 Phys. Rev. Lett. 110 195901
[18] Narayana S, Savo S, and Sato Y 2013 Appl. Phys. Lett. 102 201904
[19] Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[20] Xu H Y, Shi X H, Gao F, Sun H D, and Zhang B L 2014 Phys. Rev. Lett. 112 054301
[21] Zheng X and Li B W 2020 Phys. Rev. Appl. 13 024071
[22] Yeung W S, Yang F Y, and Yang R J 2020 AIP Adv. 10 055102
[23] Ma Y G, Liu Y C, Raza M, Wang Y D, and He S 2014 Phys. Rev. Lett. 113 205501
[24] Han T C, Yuan T, Li B W, and Qiu C W 2013 Sci. Rep. 3 1593
[25] Xu L J and Huang J P 2019 Phys. Rev. Appl. 12 044048
[26] Huang J Y, Shen X Y, Jiang C R, Wu Z H, and Huang J P 2017 Physica B 518 56
[27] Han T C, Bai X, Thong J T L, Li B W, and Qiu C W 2014 Adv. Mater. 26 1731
[28] Yang T Z, Su Y, Xu W, and Yang X D 2016 Appl. Phys. Lett. 109 121905
[29] Xu L J, Wang R Z, and Huang J P 2018 Appl. Phys. 123 245111
[30] Li Y, Bai X, Yang T Z, Luo H L, and Qiu Q W 2018 Nat. Commun. 9 273
[31] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B, and Qiu C W 2018 Adv. Mater. 30 1707237
[32] Wang J, Shao C, Li H, and Xia G 2022 Int. J. Heat Mass Transfer 188 122627
[33] Wehmeyer G, Yabuki T, Monachon C, Wu J, and Dame C 2017 Appl. Phys. Rev. 4 041304
[34] Li N B, Ren J, Wang L, Zhang G, Hänggi P, and Li B 2012 Rev. Mod. Phys. 84 1045
[35] Henry A, Prasher R, and Majumdar A 2020 Nat. Energy 5 635
[36] Lan X H, Wang Y, Peng J B, Si Y, Ren J, Ding B, and Li B W 2021 Mater. Today Phys. 17 100342
[37] Zhang J, Zhang H C, Huang Z L, Sun W B, and Li Y Y 2022 Chin. Phys. B 31 014402
Related articles from Frontiers Journals
[1] Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao, Xue-Feng Zhu, and Ying Li. Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect[J]. Chin. Phys. Lett., 2023, 40(10): 104401
[2] Zonggang He, Kun Yuan, Guohuan Xiong, and Jian Wang. Inverse Design and Experimental Verification of Metamaterials for Thermal Illusion Using Genetic Algorithms[J]. Chin. Phys. Lett., 2023, 40(10): 104401
[3] Qi Lou and Ming-Gang Xia. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial[J]. Chin. Phys. Lett., 2023, 40(9): 104401
[4] Yuhang Wei and Dahai He. Inverse Design of Phononic Crystal with Desired Transmission via a Gradient-Descent Approach[J]. Chin. Phys. Lett., 2023, 40(9): 104401
[5] Lan Dong, Bohai Liu, Yuanyuan Wang, and Xiangfan Xu. Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation[J]. Chin. Phys. Lett., 2022, 39(12): 104401
[6] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 104401
[7] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 104401
[8] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 104401
[9] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 104401
[10] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 104401
[11] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 104401
[12] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 104401
[13] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 104401
[14] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 104401
[15] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 104401
Viewed
Full text


Abstract